Search
Advanced Search
of the following are true
(
)

Results

Items (210,664)
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry
Engine Power Test Code Committee
This specification and part standard specifies polytetrafluoroethylene (PTFE) resin material and the dimensional requirements for scarf-cut retainers (backup rings) previously specified by MIL-R-8791 and MIL-R-8791/1. The retainers are intended for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with seals and O-rings
A-6C2 Seals Committee
This specification controls surface condition, manufacturing defects and inspection requirements, and defines methods of measurement for elastomeric toroidal sealing rings (O-rings) for static (including gasket) applications
A-6C2 Seals Committee
This SAE Recommended Practice establishes for passenger cars, light trucks, and multipurpose vehicles with GVW of 4500 kg (10000 pounds) or less: a Minimum performance standards for windshield wiper systems. b Test procedures that can be conducted on uniform test equipment by commercially available laboratory facilities. c Uniform terminology of windshield wiper system characteristics and phenomena consistent with those found in guides for the use of engineering layout studies to evaluate system performance. d Guides for the design and location of components of the systems for function, servicing of the system, etc. The test procedures and minimum performance standards outlined in this document are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed
Wiper Standards Committee
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the application of polymeric bearings for linear actuation systems. Design considerations are included for recommended fit and function in conjunction with material selection and load-bearing capability
A-6C2 Seals Committee
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings machined from AMS3617 polyamide material. It shall be used for procurement purposes
A-6C2 Seals Committee
This SAE Aerospace Recommended Practice (ARP) presents two BASIC language computer programs to promote and standardize the computation of installed O-ring cross-section deflection hereafter referred to as "squeeze" and the computation of gland volume. The two programs were written with line numbers and without use of any system specific BASIC commands to allow usage with as many systems as possible with a minimum of editing. The programs support entry of customary U.S. or metric dimensions. The squeeze program, called SQ.BAS, has the following features: a allows selection of either piston or rod gland b allows entry of cap strip seal thickness c computes minimum and maximum squeeze d allows checking and correction of entries before execution e allows viewing of output on screen before printing f gives advisory messages for excessive stretch or inadequate squeeze g allows on-line review of essential input and output variables prior to running program h computes clearance between minimum
A-6C2 Seals Committee
This SAE Aerospace Standard (AS) defines gland details for scrapers for rod diameters from 1/4 to 15-1/2 inch (6.35 to 393.70 mm) inclusive, corresponding to AS568 O-ring Dash No. sizes -108/-111, -206/-222, -325/-349, and -425/-460. The gland details herein allow the use of more stable, efficient, and reliable scraper devices than MS33675 glands
A-6C2 Seals Committee
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings
A-6C2 Seals Committee
This SAE Aerospace Recommended Practice (ARP) provides an overview of the various types of polytetrafluoroethylene (PTFE) backup rings for hydraulic and pneumatic fluid power applications, including their advantages and disadvantages
A-6C2 Seals Committee
This specification covers an aluminum alloy in the form of plate 4.001 to 10.000 inches (101.60 to 254.00 mm), inclusive, in nominal thickness
AMS D Nonferrous Alloys Committee
THIS STANDARD ESTABLISHES THE DIMENSIONAL AND VISUAL QUALITY REQUIREMENTS, LOT REQUIREMENTS, AND PACKAGING AND LABELING REQUIREMENTS FOR O-RINGS MOLDED FROM AMS7410 FLUOROCARBON (FKM) RUBBER. IT SHALL BE USED FOR PROCUREMENT PURPOSES
A-6C2 Seals Committee
This AIR documents the methodologies used to calculate the dimensions and tolerances used in the following backup rings standards: AS5781 AS5782 AS5860 AS5861 In addition, an appendix is provided which provides details of gland and backup ring design practices
A-6C2 Seals Committee
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings molded from AMS7274 rubber. It shall be used for procurement purposes
A-6C2 Seals Committee
This foundation specification (AMS1424S) and its associated category specifications (AMS1424/1 and AMS1424/2) cover a deicing/anti-icing material in the form of a fluid
G-12ADF Aircraft Deicing Fluids
This Recommended Practice applies to engine cooling fans up to 2000 mm in diameter with a mounting interface consisting of a pilot hole and a circular bolt pattern. Most of these fans are belt, gear, clutch, hydraulically, or electrically driven
Cooling Systems Standards Committee
This SAE Recommended Practice is intended for stakeholders of the automotive industry that are conducting emission testing on materials, parts, or components used in automotive interiors. Testing methods may specifically define the handling and packaging conditions for the material to be analyzed. In these cases, follow the method as closely as possible. Use this document as a guide where the protocol for handling and packaging the samples between production and testing may be undefined or ambiguous
Volatile Organic Compounds
THIS STANDARD ESTABLISHES THE DIMENSIONAL AND VISUAL QUALITY REQUIREMENTS, LOT REQUIREMENTS, AND PACKAGING AND LABELLING REQUIREMENTS FOR METALLIC-ENCASED COPPER GASKETS MANUFACTURED PER AMS-HH-G-101 TYPE III - STYLE J. IT SHALL BE USED FOR PROCUREMENT PURPOSES
A-6C2 Seals Committee
This specification covers the requirements for electrodeposited bronze plate and its subsequent removal
AMS B Finishes Processes and Fluids Committee
This standard provides the following: a The required surface finish criteria for the designed function of the parts b The definition of surface imperfections and defects that affect surface quality c The categories by location for each geometry for the permissible type, size and quantity of defects It also establishes the quantitative levels of acceptance by providing defined limits and inspection guidance for the acceptance or rejection of production parts This specification is applicable but not limited to, the surface quality of: T-Seals L-Rings Capped T Rings Capped L Rings Cammed Type Seals Cruciform Shaped Elastomers Pyramid (Dyna-Bak) Seals Square Ring Seals Quadruple Lobed Seals U-Cups Spring Energized U-Cups Molded in Place Metal Gasket Seals
A-6C2 Seals Committee
This SAE Aerospace Standard (AS) specifies standardized gland design criteria and dimensions for static face seals for internal pressure and external pressure applications for aerospace hydraulic and pneumatic applications using the same dash size range as AS4716 and AS5857 where applicable
A-6C2 Seals Committee
This SAE Recommended Practice is applicable to all heat exchangers used in vehicle and industrial cooling systems. This document outlines the tests to determine the heat transfer and pressure drop performance under specified conditions. This document has been reviewed and revised by adding several clarifying statements to Section 4
Cooling Systems Standards Committee
This SAE Recommended Practice is intended for use in testing and evaluating the approximate performance of engine-driven cooling fans. This performance would include flow, pressure, and power. This flow and pressure information is used to estimate the engine cooling performance. This power consumption is used to estimate net engine power per SAE J1349. The procedure also provides a general description of equipment necessary to measure the approximate fan performance. The test conditions in the procedure generally will not match those of the installation for which cooling and fuel consumption information is desired. The performance of a given fan depends on the geometric details of the installation, including the shroud and its clearance. These details should be duplicated in the test setup if accurate performance measurement is expected. The performance at a given air density and speed also depends on the volumetric flow rate, or the pressure rise across the fan, since these two
Cooling Systems Standards Committee
This SAE Recommended Practice establishes mechanical property ranges for low-carbon automotive hot-rolled sheet, cold-rolled sheet, and metallic-coated sheet steels. It also contains information that explains the different nomenclature used with these steels
Metals Technical Committee
This SAE Aerospace Information Report (AIR) provides information and guidelines on the selection and use of rotary lip seals for their expected duty cycle. Information on seal installation procedures is also included. NOTE: This document does not address mechanical or magnetic face seals
A-6C2 Seals Committee
Items per page:
1 – 50 of 210664