Published
2019-09-09
by SAE International in United States
Syngas produced from biomass gasification is being increasingly considered as a promising alternative to traditional fuels in Spark-Ignition (SI) Internal Combustion Engines (ICEs). Due to the low energy density and extreme variability in the composition of this gaseous fuel, numerical modeling can give an important contribution to assure stable engine performances.The present work intends to give a contribution in this sense in this sense, by proposing a multi-level set of approaches, characterized by an increasing detail, as a tool aimed at the optimization of energy conversion of non-conventional fuels.At first, a specific characterization of the dependency of the syngas laminar flame speed upon its composition is achieved through an iterative approach pursued in the ANSYS ChemkinTM environment, where validated correlations of the flame speed tuning parameters are obtained in a zero-dimensional framework.Subsequently, the interaction between combustion kinetics and fluid dynamics is considered through the development of a mono-dimensional (1D) model of the whole engine system in the GT-Power environment. A predictive combustion model, tuned on the ground of the combustion parameters determined through the previous…
This content contains downloadable datasets
Annotation ability available
This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Published
2019-09-09
by SAE International in United States
The introduction of new light-duty vehicle emission limits to comply under real driving conditions (RDE) is pushing the diesel engine manufacturers to identify and improve the technologies and strategies for further emission reduction. The latest technology advancements on the after-treatment systems have permitted to achieve very low emission conformity factors over the RDE, and therefore, the biggest challenge of the diesel engine development is maintaining its competitiveness in the trade-off “CO2-system cost” in comparison to other propulsion systems. In this regard, diesel engines can continue to play an important role, in the short-medium term, to enable cost-effective compliance of CO2-fleet emission targets, either in conventional or hybrid propulsion systems configuration. This is especially true for large-size cars, SUVs and light commercial vehicles.In this framework, a comprehensive approach covering the whole powertrain is of primary importance in order to simultaneously meet the performance, efficiency, noise and emission targets, and therefore, further development of the combustion system design and injection system represent important levers for additional improvements. For this purpose, a dedicated 0.5 dm3 single-cylinder engine has…
This content contains downloadable datasets
Annotation ability available
This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Istituto Motori CNR-Renato Marialto, Luigi Sequino, Gabriele Di Blasio, Carlo Beatrice, Roberto Ianniello
Universita di Cassino-Gustavo Fontana
Universita di Napoli-Massimo Cardone
Technical Paper
2019-24-0038
Published
2019-09-09
by SAE International in United States
Recently, it has been worth pointing out the relevance of alternative fuels in the improvement of air quality conditions and in the mitigation of global warming. In order to deal with these demands, in recent studies, it has been considered a great variety of alternative fuels. It goes without saying that the alternative fuels industry needs the best of the efficiency with a moderate layout. From this perspective, Liquefied Petroleum Gas (LPG) could represent a valid option, although it is not a renewable fuel. In terms of polluting emissions, the LPG can reduce nitrous oxides and smoke concentrations in the air, a capability that has a relevant importance for the modern pollution legislation. LPG is well known as an alternative fuel for Spark Ignition (SI) engines and, more recently, LPG systems have also been introduced in the Compression Ignition (CI) engines in dual-fuel configuration.In this research, LPG-Diesel liquid-blend has been used to power a CI engine in mixed fuel configuration. For this purpose, accurate modifications have been made on the single cylinder test ring and…
This content contains downloadable datasets
Annotation ability available
This content is not included in your SAE MOBILUS subscription, or you are not logged in.
National Research Council of Italy-Gabriele Di Blasio
Journal Article
2019-01-0547
Published
2019-04-02
by SAE International in United States
Diesel will continue to be an indispensable energy carrier for the car fleet CO2 emission targets in the short-term. This is particularly relevant for heavy-duty vehicles as for mid-size cars and SUVs. Looking at the latest technology achievements on the after-treatment systems, it can be stated that the concerning about the NOx emission gap between homologation test and real road use is basically solved, while the future challenge for diesel survival is to keep its competitiveness in the CO2 vs cost equation in comparison to other propulsion systems.The development of the combustion system design still represents an important leverage for further efficiency and emissions improvements while keeping the current excellent performance in terms of power density and low-end torque.The paper describes the results achieved in developing a new diesel combustion system for car application that, leveraging on the high flexibility of the latest fuel injection technology, combines outstanding power and fuel efficiency with low pollutant emissions in ultralight engine designed for lower maximum peak cylinder pressure. The study has been carried out on a 0.5l…
This content contains downloadable datasets
Annotation ability available
This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Istituto Motori Consiglio Nazionale delle Ricerche, Italy-Gabriele Di Blasio
Journal Article
03-12-02-0010
Published
2019-01-23
by SAE International in United States
The article describes the results achieved in developing a new diesel combustion system for passenger car application that, while capable of high power density, delivers excellent fuel economy through a combination of mechanical and thermodynamic efficiencies improvement. The project stemmed from the idea that, by leveraging the high fuel injection pressure of last generation common rail systems, it is possible to reduce the engine peak firing pressure (pfp) with great benefits on reciprocating and rotating components’ light-weighting and friction for high-speed light-duty engines, while keeping the power density at competitive levels. To this aim, an advanced injection system concept capable of injection pressure greater than 2500 bar was coupled to a prototype engine featuring newly developed combustion system. Then, the matching among these features has been thoroughly experimentally examined. The results confirmed the benefits of the employment of high fuel injection pressures as a way to reduce the pfp, combining competitive performance and excellent fuel efficiency with emissions and noise, vibration, and harshness (NVH) requirements of last generation diesel engines for passenger car applications. In…
This content contains downloadable datasets
Annotation ability available
This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Published
2018-09-10
by SAE International in United States
The application of more efficient compression ignition combustion concepts requires advancement in terms of fuel injection technologies. The injector nozzle is the most critical component of the whole injection system for its impact on the combustion process. It is characterized by the number of holes, diameter, internal shape, and opening angle. The reduction of the nozzle hole diameter seems the simplest way to promote the atomization process but the number of holes must be increased to keep constant the injected fuel mass. This logic has been applied to the development of a new generation of injectors. First, the tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate. The vertical movement of the needle generates an annulus area for the fuel delivery on 360 degrees, so controlling the atomization as a function of the vertical plate position. Second, on the base of the obtained results, the authors have introduced a new nozzle configuration. This is characterized by a hybrid fuel injection concept,…
This content contains downloadable datasets
Annotation ability available
This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Published
2018-05-30
by SAE International in United States
The paper describes the results achieved in developing a new diesel combustion system for passenger car application that, while capable of high power density, delivers excellent fuel economy through a combination of mechanical and thermodynamic efficiencies improvement.The project stemmed from the idea that, by leveraging the high fuel injection pressure of last generation common rail systems, it is possible to reduce the engine peak firing pressure (pfp) with great benefits on reciprocating and rotating components light-weighting and friction for high-speed light-duty engines, while keeping the power density at competitive levels. To this aim, an advanced injection system concept capable of injection pressure greater than 2500 bar was coupled to a prototype engine featuring newly developed combustion system. Then, the matching among these features have been thoroughly experimentally examined.The results confirmed the benefits of the employment of high fuel injection pressures as a way to reduce the pfp, combining competitive performance and excellent fuel efficiency with emissions and Noise Vibration Harshness (NVH) requirements of last generation diesel engines for passenger car applications. In particular, the paper…
This content contains downloadable datasets
Annotation ability available
This content is not included in your SAE MOBILUS subscription, or you are not logged in.
General Motors-Francesco Concetto Pesce, Alberto Vassallo
Istituto Motori CNR-Gabriele Di Blasio, Carlo Beatrice, Giacomo Belgiorno
Journal Article
2017-24-0072
Published
2017-09-04
by SAE International in United States
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator.Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports.The matching among the above-described elements has been thoroughly examined and experimentally parameterized. The tests confirmed the benefits of the employment of very high fuel injection pressures as a way to decouple the trade-off between an excellent power rating and emissions / NVH / CO2 at part load, whose combination truly defines the leading edge of modern diesel engines for automotive application.The paper also discusses the system sensitivity to the boundary conditions, of the charging and exhaust systems, and develops a balanced…
This content contains downloadable datasets
Annotation ability available
This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Published
2017-09-04
by SAE International in United States
Technologies for direct injection of fuel in compression ignition engines are in continuous development. One of the most investigated components of this system is the injector; in particular, main attention is given to the nozzle characteristics as hole diameter, number, internal shape, and opening angle. The reduction of nozzle hole diameter seems the simplest way to increase the average fuel velocity and to promote the atomization process. On the other hand, the number of holes must increase to keep the desired mass flow rate. On this basis, a new logic has been applied for the development of the next generation of injectors. The tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate that moves vertically. The plate motion allows to obtain an annulus area for the delivery of the fuel on 360 degrees; while the plate lift permits to vary the atomization level of the spray. The experimental activities have been performed on a single-cylinder metal engine in order to evaluate…
This content contains downloadable datasets
Annotation ability available
This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Published
2017-09-04
by SAE International in United States
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion.This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.The experiments are conducted on a 2l Volvo Euro 6 diesel engine. The fuels tested are Gasoline RON75 and MK1 diesel. Gasoline RON75 permits operation from low to high engine load conditions.…
This modal will allow the user to download citation information or export specific fields of data into one of three file formats: Excel, comma-separated values, or text.
Sorry, this document is already saved to a project folder.
Share
Share this content via social media.
Share Via Email
Save Search
Use this modal to save a search.
Save Search
The current search and criteria have already been saved. Please modify your criteria to save as a new search.
Content Request
Alert Details
Search Tips
Search Tips: Search Operators:AND, OR, NOT; Wild Cards; Using Quotes
SAE MOBILUS® Search Tips
Please note: All terms not contained within quotes, will be evaluated using the OR operator. This means that your search results will contain all results that contain ANY of the entered terms.
AND, OR, NOT
SAE MOBILUS supports the use of the AND, OR and NOT BOOLEAN operators ONLY function with the Advanced Search.
Wild Cards
Using the asterisk, ( * ) allows you to search for a partial word. For example, entering a keyword search of aero* will search for any word beginning with aero.
Using the question mark, ( ? ) allows you to search for a word with a single character wildcard. For example, searching for t?re would match both tire and tyre
Using Quotes
Words in double quotes " " are treated as a phrase. Conducting a search for "heat model" will return all results in which the exact phrase "heat model" is found, while "heat modeling" would NOT be included.
A term combined with a phrase will be joined with an OR operator.
Searching for Standards
When searching for a standard please use the entire Document Number assigned, which includes the abbreviation. A space can be used, or omitted between the abbreviation and number.