Your Selections

Contino, Francesco
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Combustion Characteristics of Ammonia in a Modern Spark-Ignition Engine

Université D'Orléans-Charles Lhuillier, Pierre BREQUIGNY, Christine Rousselle
Vrije Universiteit Brussel-Francesco Contino
Published 2019-10-07 by SAE International in United States
Ammonia is now recognized as a very serious asset in the context of the hydrogen energy economy, thanks to its non-carbon nature, competitive energy density and very mature production, storage and transport processes. If produced from renewable sources, its use as a direct combustion fuel could participate to the flexibility in the power sector as well as help mitigating fossil fuel use in certain sectors, such as long-haul shipping. However, ammonia presents unfavorable combustion properties, requiring further investigation of its combustion characteristics in practical systems. In the present study, a modern single-cylinder spark-ignition engine is fueled with gaseous ammonia/air mixtures at various equivalence ratios and intake pressures. The results are compared with methane/air and previous ammonia/hydrogen/air measurements, where hydrogen is used as combustion promoter. In-cylinder pressure and exhaust concentrations of selected species are measured and analyzed. Results show that ammonia is a very suitable fuel for SI engine operation, since high power outputs were achieved with satisfying efficiency by taking advantage of the promoting effects of either hydrogen enrichment or increased intake pressure, or a…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance and Emissions of an Ammonia-Fueled SI Engine with Hydrogen Enrichment

Universite D'Orleans-Pierre BREQUIGNY, Christine Rousselle
Université D'Orleans-Charles Lhuillier
Published 2019-09-09 by SAE International in United States
While the optimization of the internal combustion engine (ICE) remains a very important topic, alternative fuels are also expected to play a significant role in the reduction of CO2 emissions. High energy densities and handling ease are their main advantages amongst other energy carriers. Ammonia (NH3) additionally contains no carbon and has a worldwide existing transport and storage infrastructure. It could be produced directly from renewable electricity, water and air, and is thus currently considered as a smart energy carrier and combustion fuel. However, ammonia presents a low combustion intensity and the risk of elevated nitrogen-based emissions, thus rendering in-depth investigation of its suitability as an ICE fuel necessary.In the present study, a recent single-cylinder spark-ignition engine is fueled with gaseous ammonia/hydrogen/air mixtures at various hydrogen fractions, equivalence ratios and intake pressures. A small hydrogen fraction is used as combustion promoter and might be generated in-situ through NH3 catalytic or heat-assisted dissociation. The in-cylinder pressure and exhaust concentrations of selected species are recorded and analyzed. Results show that ammonia is a very suitable fuel for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Feasibility Study of a New Test Procedure to Identify High Emitters of Particulate Matter during Periodic Technical Inspection

FLOW & BURN, Vrije Universiteit Brussel-François Boveroux, Séverine Cassiers, Francesco Contino
GOCA vzw-Pascal Buekenhoudt, Laurent Chavatte, Philippe De Meyer
Published 2019-04-02 by SAE International in United States
The Diesel Particulate Filter (DPF) is the most effective way to reduce particulate matter emissions from diesel vehicles and is fitted on every passenger car since the EURO5 emission standard. Unfortunately, this essential after-treatment device can be damaged over time or could be defective from the manufacturing, negatively impacting its filtration efficiency. It is also sometimes illegally removed. Today in Europe, the presence and effectiveness of the DPF cannot be determined at the Periodic Technical Inspection (PTI), during which an opacity measurement of the exhaust gases is performed during a free acceleration test. Therefore, this work presents the results of the feasibility study of a new test procedure using devices measuring a particulate matter concentration (PN). The test consists of a PN measurement at low idle, which shows good correlation with NEDC PN emissions. This test procedure is afterwards compared to the opacity test on more than 300 EURO5 and EURO6 diesel vehicles. Two different PN measurement devices have been used and compared. This measurement campaign allowed to observe the negative influence of mileage and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Prediction of the PIONA and oxygenate composition of unconventional fuels with the Pseudo-Component Property Estimation (PCPE) method. Application to an Automotive Shredder Residues-derived gasoline

Ghent University-Steffen H. Symoens, Marko R. Djokic, Kevin M. Van Geem
Université Libre de Bruxelles-Steven Tipler, Alessandro Parente, Axel Coussement
Published 2018-04-03 by SAE International in United States
To check if an unconventional fuel can be burned in an engine, monitoring the stability in terms of composition is mandatory. When the composition of a conventional fuel cannot be measured for practical reason, it can be approximated using the API (American Petroleum Institute) relations (Riazi-Daubert) linking the hydrocarbon group fractions with well-chosen properties. These relations cover only the paraffin (coupling iso and normal), naphthene and aromatic (PNA) groups as they were developed for conventional fuels presenting neglected amounts of olefins and oxygenates. Olefins and oxygenates can be present in unconventional fuels. This paper presents a methodology applicable to any unconventional fuel to build a model to estimate the n-paraffin, iso-paraffin, olefin, naphthene, aromatic and oxygenate (PIONAOx) composition. The current model was demonstrated for an automotive shredder residues (ASR)-derived gasoline-like fuel (GLF). The model was trained using real fractions measured with a comprehensive two-dimensional gas chromatography coupled with flame ionization detector (GC × GC-FID) technique. The lowest cumulated absolute error comparing with the confidence interval of the measured fractions was evaluated to be 12.4%. The model was…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Ammonia-Hydrogen Blends in Homogeneous-Charge Compression-Ignition Engine

Université catholique de Louvain-Maxime Pochet, Hervé Jeanmart
Université d'Orléans-Ida Truedsson, Fabrice Foucher
Published 2017-09-04 by SAE International in United States
Ammonia and hydrogen can be produced from water, air and excess renewable electricity (Power-to-fuel) and are therefore a promising alternative in the transition from fossil fuel energy to cleaner energy sources. An Homogeneous-Charge Compression-Ignition (HCCI) engine is therefore being studied to use both fuels under a variable blending ratio for Combined Heat and Power (CHP) production. Due to the high auto-ignition resistance of ammonia, hydrogen is required to promote and stabilize the HCCI combustion. Therefore the research objective is to investigate the HCCI combustion of varying hydrogen-ammonia blending ratios in a 16:1 compression ratio engine. A specific focus is put on maximizing the ammonia proportion as well as minimizing the NOx emissions that could arise from the nitrogen contained in the ammonia. A single-cylinder, constant speed, HCCI engine has been used with an intake pressure varied from 1 to 1.5 bar and with intake temperatures ranging from 428 to 473 K. Stable combustion was achieved with up to 70 %vol. ammonia proportion by increasing the intake pressure to 1.5 bar, the intake temperature to 473…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

SAE International Journal of Engines

Lund University of Technology-Mehdi Jangi
Politecnico di Milano-Tommaso Lucchini, Gianluca D'Errico
  • Journal Article
  • 2014-01-1144
Published 2014-04-01 by SAE International in United States
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes. For IC engine simulations, the most promising ones are the Eulerian field PDF methods (SEF) whose formulation was originally proposed by Valiño and Sabel'nikov. Such models can be easily incorporated into CFD codes and are less computationally intensive with respect to Lagrangian approaches. In…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Detailed Kinetic Analysis of HCCI Combustion Using a New Multi-Zone Model and CFD Simulations

SAE International Journal of Engines

Politecnico di Milano-Mattia Bissoli, Alberto Cuoci, Alessio Frassoldati, Tiziano Faravelli, Eliseo Ranzi, Tommaso Lucchini, Gianluca D'Errico
Vrije Universiteit Brussel-Francesco Contino
  • Journal Article
  • 2013-24-0021
Published 2013-09-08 by SAE International in United States
A new multi-zone model for the simulation of HCCI engine is here presented. The model includes laminar and turbulent diffusion and conduction exchange between the zones and the last improvements on the numerical aspects. Furthermore, a new strategy for the zone discretization is presented, which allows a better description of the near-wall zones. The aim of the work is to provide a fast and reliable model for carrying out chemical analysis with detailed kinetic schemes. A preliminary sensitivity analysis allows to verify that 10 zones are a convenient number for a good compromise between the computational effort and the description accuracy. The multi-zone predictions are then compared with the CFD ones to find the effective turbulence parameters, with the aim to describe the near-wall phenomena, both in a reactive and non-reactive cases. Finally, the model is validated against experimental data of HCCI combustion of fossil and bio-fuels (n-heptane, methyl-hexanoate, and methyl-decanote).
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Engine Performances and Emissions of Second-Generation Biofuels in Spark Ignition Engines: The Case of Methyl and Ethyl Valerates

CNRS-Guillaume Dayma, Philippe Dagaut
Universite D'Orleans-Christine Mounaïm-Rousselle
Published 2013-09-08 by SAE International in United States
As an alternative to second generation ethanol, valeric esters can be produced from lignocellulose through levulinic acid. While some data on these fuels are available, only few experiments have been performed to analyze their combustion characteristics under engine conditions. Using a traditional spark ignition engine converted to mono-cylinder operation, we have investigated the engine performances and emissions of methyl and ethyl valerates. This paper compares the experimental results for pure valeric esters and for blends of 20% of esters in PRF95, with PRF95 as the reference fuel. The esters propagate faster than PRF95 which requires a slight change of ignition timing to optimise the work output. However, both the performances and the emissions are not significantly changed compared to the reference. Accordingly, methyl and ethyl valerate represent very good alternatives as biofuels for SI engines. Future studies will focus on testing these esters in real application engines and performing endurance tests.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulations of Advanced Combustion Modes Using Detailed Chemistry Combined with Tabulation and Mechanism Reduction Techniques

SAE International Journal of Engines

Politecnico di Milano-Tommaso Lucchini, Gianluca D'Errico
Universite catholique de Louvain-Francesco Contino, Catherine Duynslaegher, Veronique Dias, Herve Jeanmart
  • Journal Article
  • 2012-01-0145
Published 2012-04-16 by SAE International in United States
Multi-dimensional models represent today consolidated tools to simulate the combustion process in HCCI and diesel engines. Various approaches are available for this purpose, it is however widely accepted that detailed chemistry represents a fundamental prerequisite to obtain satisfactory results when the engine runs with complex injection strategies or advanced combustion modes. Yet, integrating such mechanisms generally results in prohibitive computational cost.This paper presents a comprehensive methodology for fast and efficient simulations of combustion in internal combustion engines using detailed chemistry. For this purpose, techniques to tabulate the species reaction rates and to reduce the chemical mechanisms on the fly have been coupled. In this way, the computational overheads related to the use of these mechanisms are significantly reduced since tabulated reaction rates are re-used for cells with similar compositions and, when it becomes necessary to perform direct integration, only the relevant set of species and reactions is taken into account.The proposed approach named tabulation of dynamic adaptive chemistry (TDAC) has been implemented in the Lib-ICE code, which is a set of libraries and applications for…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study of the HCCI Running Zone Using Ethyl Acetate

Université catholique de Louvain (UCL)-Francesco Contino, Hervé Jeanmart
Published 2009-04-20 by SAE International in United States
HCCI mode has shown its potential to improve emissions and efficiency in internal combustion engines. In addition, it has open the possibility to use a wider range of fuels than in SI and CI engines. However, the engine running zone is still one of the main challenges that HCCI has to face. We have investigated this zone in the case of ethyl acetate using CFD simulations with a simplified combustion mechanism. This paper describes how ethyl acetate influences the running zone of HCCI engines compared to iso-octane.Biochemical conversion of fermentable biomass can produce large quantities of esters by the reaction of ethanol with volatile organic acids. Among them, ethyl acetate has a low vaporization temperature and a high auto-ignition temperature. Preliminary experiments on SI engines have shown that it ignites more slowly than gasoline even if their physical properties are similar.As fuel oxidation kinetics determine start of ignition, heat release rate and part of the emissions in HCCI engines, we used a detailed mechanism for ethyl acetate in a zero-dimensional analysis. Based on these results,…
Annotation ability available