This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Durability Study of Automotive Additive Manufactured Specimens

Journal Article
2020-01-0957
ISSN: 2641-9637, e-ISSN: 2641-9645
Published April 14, 2020 by SAE International in United States
Durability Study of Automotive Additive Manufactured Specimens
Sector:
Citation: Zareanshahraki, F., Davenport, A., Cramer, N., Seubert, C. et al., "Durability Study of Automotive Additive Manufactured Specimens," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(3):1659-1668, 2020, https://doi.org/10.4271/2020-01-0957.
Language: English

References

  1. Böckin, D. and Tillman, A.-M. , “Environmental Assessment of Additive Manufacturing in the Automotive Industry,” J. Clean. Prod. 226:977-987, 2019, doi:10.1016/j.jclepro.2019.04.086.
  2. Leal, R., Barreiros, F.M., Alves, L., Romeiro, F. et al. , “Additive Manufacturing Tooling for the Automotive Industry,” Int. J. Adv. Manuf. Technol. 92(5):1671-1676, 2017, doi:10.1007/s00170-017-0239-8.
  3. Wang, Y.-C., Chen, T., and Yeh, Y.-L. , “Advanced 3D Printing Technologies for the Aircraft Industry: a Fuzzy Systematic Approach for Assessing the Critical Factors,” Int. J. Adv. Manuf. Technol., 2018, doi:10.1007/s00170-018-1927-8.
  4. Ambrosi, A. and Pumera, M. , “3D-Printing Technologies for Electrochemical Applications,” Chem. Soc. Rev. 45(10):2740-2755, 2016, doi:10.1039/C5CS00714C.
  5. Ford, S.L.N. , “Additive Manufacturing Technology: Potential Implications for U.S. Manufacturing Competitiveness,” J. Int. Commer. Econ. 6(1):40-74, 2014.
  6. Ligon, S.C., Liska, R., Stampfl, J., Gurr, M. et al. , “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15):10212-10290, 2017, doi:10.1021/acs.chemrev.7b00074.
  7. Zareanshahraki, F. and Mannari, V. , “‘Green’ UV-LED Gel Nail Polishes from Bio-Based Materials,” Int. J. Cosmet. Sci. 40(6):555-564, 2018, doi:10.1111/ics.12497.
  8. Zareanshahraki, F., Asemani, H.R., Skuza, J., and Mannari, V. , “Synthesis of Non-Isocyanate Polyurethanes and Their Application in Radiation-Curable Aerospace Coatings,” Prog. Org. Coat. 138:105394, 2020, doi:10.1016/j.porgcoat.2019.105394.
  9. Akdogan, O.K., Zareanshahraki, F., and Mannari, V. , “Dual-Cure Polyurethane Coatings from Soybean Oil and Their Film Properties as a Function of Cure Sequence,” J. Lipid Sci. Technol. 50(4):112-122, 2019.
  10. Bagheri, A. and Jin, J. , “Photopolymerization in 3D Printing,” ACS Appl. Polym. Mater. 1(4):593-611, 2019, doi:10.1021/acsapm.8b00165.
  11. Sycks, D.G., Wu, T., Park, H.S., and Gall, K. , “Tough, Stable Spiroacetal Thiol-Ene Resin for 3D Printing,” J. Appl. Polym. Sci. 135(22):46259, 2018, doi:10.1002/app.46259.
  12. Chen, L., Wu, Q., Wei, G., Liu, R. et al. , “Highly Stable Thiol-Ene Systems: From Their Structure-Property Relationship to DLP 3D Printing,” J. Mater. Chem. C 6(43):11561-11568, 2018, doi:10.1039/C8TC03389G.
  13. Cramer, N.B., Reddy, S.K., O’Brien, A.K., and Bowman, C.N. , “Thiol−Ene Photopolymerization Mechanism and Rate Limiting Step Changes for Various Vinyl Functional Group Chemistries,” Macromolecules 36(21):7964-7969, 2003, doi:10.1021/ma034667s.
  14. Hoyle, C.E. and Bowman, C.N. , “Thiol-Ene Click Chemistry,” Angew. Chem. Int. Ed. 49(9):1540-1573, 2010, doi:10.1002/anie.200903924.
  15. Leonards, H., Engelhardt, S., Hoffmann, A., Pongratz, L. et al. , “Advantages and drawbacks of Thiol-ene based resins for 3D-printing,” in Laser 3D Manufacturing II, International Society for Optics and Photonics, 93530F, 2015, doi:10.1117/12.2081169.
  16. Vitale, A. and Cabral, J. , “Frontal Conversion and Uniformity in 3D Printing by Photopolymerisation,” Materials 9(9):760, 2016, doi:10.3390/ma9090760.
  17. Gundrati, N.B., Chakraborty, P., Zhou, C., and Chung, D.D.L. , “Effects of Printing Conditions on the Molecular Alignment of Three-Dimensionally Printed Polymer,” Compos. Part B Eng. 134:164-168, 2018, doi:10.1016/j.compositesb.2017.09.067.
  18. Seubert, C.M., Nichols, M.E., Cooper, V.A., and Gerlock, J.L. , “The Long-Term Weathering Behavior of UV Curable Clearcoats: I. Bulk Chemical and Physical Analysis,” Polym. Degrad. Stab. 81(1):103-115, 2003, doi:10.1016/S0141-3910(03)00079-X.
  19. The RadTech UV Clearcoat Durability Study: How Paint Performance Is Assessed by Ford Motor Company - UV+EB Technology, https://uvebtech.com/articles/2019/the-radtech-uv-clearcoat-durability-study-how-paint-performance-is-assessed-by-ford-motor-company/, Nov. 2019.
  20. Bekiaris, G., Bruun, S., Peltre, C., Houot, S. et al. , “FTIR-PAS: A Powerful Tool for Characterising the Chemical Composition and Predicting the Labile C Fraction of Various Organic Waste Products,” Waste Manag. 39:45-56, 2015, doi:10.1016/j.wasman.2015.02.029.
  21. Oliver, W.C. and Pharr, G.M. , “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res. 7(6):1564-1583, 1992, doi:10.1557/JMR.1992.1564.
  22. Srivastava, S. , “Co-Polymerization of Acrylates,” Des. Monomers Polym. 12(1):1-18, 2009, doi:10.1163/156855508X391103.

Cited By