This content is not included in your SAE MOBILUS subscription, or you are not logged in.

High Strain Rate Tensile Behavior of 1180MPa Grade Advanced High Strength Steels

Journal Article
ISSN: 2641-9637, e-ISSN: 2641-9645
Published April 14, 2020 by SAE International in United States
High Strain Rate Tensile Behavior of 1180MPa Grade Advanced High Strength Steels
Citation: Savic, V., Hector, L., Alturk, R., and Enloe, C., "High Strain Rate Tensile Behavior of 1180MPa Grade Advanced High Strength Steels," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(3):1561-1568, 2020,
Language: English


  1. Oliver, S., Jones, T.B., and Fourlaris, G. , “Dual Phase Versus TRIP Strip Steels: Microstructural Changes as a Consequence of Quasi-Static and Dynamic Tensile Testing,” Materials Characterization 58:390-400, 2007, doi:10.1016/j.matchar.2006.07.004.
  2. Benyon, N.D., Jones, T.B., and Fourlaris, G. , “Effect of High Strain Rate Deformation on Microstructure of Strip Steels Tested under Dynamic Tensile Conditions,” Materials Science and Technology 21(1):103-112, 2005, doi:10.1179/174328405X16234.
  3. Liang, J., Zhao, Z., Wu, H., Peng, C. et al. , “Mechanical Behavior of Two Ferrite-Martensite Dual-Phase Steels over a Broad Range of Strain Rates,” Metals 8:1-14, 2018, doi:10.3390/met8040236.
  4. Kamiura, T. and Takahashi, S. , “Study on Effect of Strain Rate on Elongation in Advanced High Strength Steel,” Procedia Engineering 207:1988-1993, 2017, doi:10.1016/j.proeng.2017.10.1097.
  5. Das, A., Ghosh, M., Tarafder, S., Sivaprasad, S. et al. , “Micromechanisms of Deformation in Dual Phase Steels at High Strain Rates,” Materials Science and Engineering A 680:249-258, 2017, doi:10.1016/j.msea.2016.10.101.
  6. Cao, Y., Ahlstrom, J., and Karlsson, B. , “The Influence of Temperatures and Strain Rates on the Mechanical Behavior of Dual Phase Steel in Different Conditions,” Journal of Materials Research and Technology 4(1):68-74, 2015, doi:10.1016/j.jmrt.2014.11.001.
  7. Kim, J.-H., Kim, D., Han, H.N., Barlat, F. et al. , “Strain Rate Dependent Tensile Behavior of Advanced High Strength Steels: Experiment and Constitutive Modeling,” Materials Science and Engineering A 559:222-231, 2013, doi:10.1016/j.msea.2012.08.087.
  8. Madrid, M., Van Tyne, C.J., and Sadagopan, S. , “Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades,” JOM 70(6):918-923, 2018, doi:10.1007/s11837-018-2852-x.
  9. Murata, T., Hamamoto, S., Utsumi, Y., Yamano, T. et al. , “Characteristics of 1180MPa Grade Cold-rolled Steel Sheets with Excellent Formability,” KOBELCO Technology Review 35:45-49, 2017.
  10. Poulin, C.M., Korkolis, Y.P., Kinsey, B.L., and Knezevic, M. , “Over Five-Times Improved Elongation-to-Fracture of Dual-Phase 1180 Steel by Continuous-Bending-under-Tension,” Materials and Design 161:95-105, 2019, doi:10.1016/j.matdes.2018.11.022.
  11. Gao, Q., Han, F., Wortberg, D., Bleck, W. et al. , “Influence of Hydrogen on Formability and Bendability of DP1180 Steel for Car Body Application,” IOP Conf. Ser.: Mater. Sci. Eng 159, 2016, doi:10.1088/1757-899X/159/1/012010.
  12. Heibel, S., Dettinger, T., Nester, W., Clausmeyer, T. et al. , “Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels,” Materials 11:1-34, 2018, doi:10.3390/ma11050761.
  13. Li, Y., Song, R., Jiang, L., and Zhao, Z. , “Strength Response of 1200 MPa Grade Martensite-Ferrite Dual-Phase Steel under High Strain Rates,” Scripta Materialia 164:21-24, 2019, doi:10.1016/j.scriptamat.2019.01.031.
  14. Wang, W., Li, M., He, C., Wei, X. et al. , “Experimental Study on High Strain Rate Behavior of High Strength 600-1000 MPa dual Phase Steels and 1200 MPa Fully Martensitic Steels,” Materials and Design 47:510-521, 2013, doi:10.1016/j.matdes.2012.12.068.
  15. Peterson, S.F., Mataya, M.C., and Matlock, D.K. , “The Formability of Austenitic Stainless Steels,” JOM 49(9):54-58, 1997, doi:10.1007/BF02914352.
  16. Finfrock, C., Becker, G., Ballard, T., Thomas, G. et al. , “Tensile Deformation Characteristics and Austenite Transformation Behavior of Advanced High Strength Steels Considering Adiabatic Heating,” in Materials Science and Technology 2019 (MS&T19), Portland, OR, Sep 29 -Oct 3, 2019, doi:10.7449/2019/MST_2019_1236_1243.
  17. Zackay, V.F., Parker, E.R., Fahr, D., and Bush, R. , “The Enhancement of Ductility in High Strength Steels,” Trans. Am. Soc. Met. 60:252-259, 1967, doi:10.1155/2014/658947.
  18. Park, T., Hu, X., Abu-Farha, F. et al. , “Crystal Plasticity Model of Third Generation Multi-phase AHSS with Martensitic Transformation,” Hector, Jr., L.G., Int. J. Plasticity 120:1-46, 2019, doi:10.1016.j.ijplas.2019.03.010.
  19. Enloe, C.M., Savic, V., Poling, W., and Hector, L.G. Jr. , “Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite,” SAE Technical Paper 2019-01-0521 , 2019, doi:
  20. Li, Z., Kiran, R., Hu, J., Hector, L.G. Jr. et al. , “Analysis and Design of a TRIP Steel Microstructure for Enhanced Fracture Resistance,” Int. J. Fracture, 2019 in press.
  21. Gerbig, D., Srivastava, A., Osovski, S., Hector, L.G. Jr. et al. , “Analysis and Design of Dual-Phase Steel Microstructure for Enhanced Ductile Fracture Resistance,” Int. J. Fracture 209(1-2):3-26, 2018, doi:10.1007/s10704-017-0235-x.
  22. DeMoor, E., Gibbs, P.J., Speer, J.G., and Matlock, D.K. , “Strategies for Third Generation Advanced High Strength Steel Development,” AIST Trans. 7(3):133-144, 2010.
  23. Horvath, C.D., Enloe, C.M., Singh, J.P., and Coryell, J.J. , “Persistent Challenges to Advanced High-Strength Steel Implementation,” in Proceedings of the International Symposium on New Developments in Advanced High-Strength Sheet Steels, Association for Iron and Steel Technology, Keystone, CO, USA, 2017.
  24. Speer, S., Matlock, D.K., De Cooman, B.C., and Schroth, J.G. , “Carbon Partitioning into Austenite after Martensite Transformation,” Acta Materialia 51:2611-2622, 2003, doi:10.1016/S1359-6454(03)00059-4.
  25. Yang, X., Hector, L.G. Jr., and Wang, J. , “A Combined Theoretical/Experimental Approach for Reducing Ringing Artifacts in Low Dynamic Testing with Servo-hydraulic Load Frames,” Experimental Mechanics 54(5):775-789, 2014, doi:10.1007/s11340-014-9850-x.
  26. Wang, Y., Hu, X., Erdman, D.L., Starbuck, M.J. et al. , “Characterization of High-strain Rate Mechanical Behavior of AZ31 MAgnesuim Alloy Using 3D Digital Image Correlation,” Advanced Engineering Materials 13(10):943-948, 2011, doi:10.1002/adem.201100048.
  27. ISO 26203-2 Metallic Materials - Tensile Testing at High Strain Rates - Part 2: Servo-hydraulic and Other Test Systems, ISO, 2011
  28. ASTM , E8 / E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials (West Conshohocken, PA: ASTM International, 2016), doi:10.1520/E0008_E0008M-16A.
  30. Alturk, R., Hector, L.G. Jr., and Enloe, C.M. , “Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel,” JOM 70(6):894-905, 2018, doi:10.1007/s11837-018-2830-3.
  31. Kim, C. , “X-ray Method of Measuring Retained Austenite in Heat Treated White Cast Irons,” Journal of Heat Treating 1(2):43-51, 1979,
  32. Hu, X., Sun, X., Hector, L.G. Jr., and Ren, Y. , “Individual Phase Constitutive Properties of a TRIP-assisted QP980 Steel from a Combined Synchrotron X-ray Diffraction and Crystal Plasticty Approach,” Acta Materialia 132:230-244, 2017, doi:10.1016/ j.actamat.2017.04.028.
  33. Abu-Farha, F., Hu, X., Sun, X., Ren, Y. et al. , “In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels,” Metallurgical and Materials Transactions A 49(7):2583-2596, 2018, doi:10.1007/s11661-018-4660-x.
  34. Xiong, X.C., Chen, B., Huang, M.X., Wang, J.F. et al. , “The Effect of Morphology on the Stability of Retained Austenite in a Quenched and Partitioned Steel,” Scripta Materialia 68(5):321-324, 2013, doi:10.1016/j.scriptamat.2012.11.003.
  35. Paruz, H. and Edmonds, D.V. , “The Strain Hardening Behaviour of Dual-phase Steel,” Materials Science and Engineering A 117:67-74, 1989, doi:10.1016/0921-5093(89)90087-7.
  36. Krauss, G. and Matlock, D.K. , “Effects of Strain Hardening and Fine Structure on Strength and Toughness of Tempered Martensite in Carbon Steels,” Journal de Physique 5(C8):51-60, 1995, doi:10.1051/jp4:1995806.

Cited By