This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Quasi-Dimensional Multi-Zone Combustion Diagnostic Tool for SI Engines with Novel NOx and CO Emissions Models

Journal Article
2020-01-0289
ISSN: 2641-9645, e-ISSN: 2641-9645
Published April 14, 2020 by SAE International in United States
Quasi-Dimensional Multi-Zone Combustion Diagnostic Tool for SI Engines with Novel NOx and CO Emissions Models
Sector:
Citation: Michos, K. and Bikas, G., "Quasi-Dimensional Multi-Zone Combustion Diagnostic Tool for SI Engines with Novel NOx and CO Emissions Models," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(4):1818-1848, 2020, https://doi.org/10.4271/2020-01-0289.
Language: English

References

  1. Gatowski , J.A. , Balles , E.N. , Chun , K.M. , Nelson , F.E. et al. Heat Release Analysis of Engine Pressure Data SAE Technical Paper 841359 1984 https://doi.org/10.4271/841359
  2. Amann , C.A. Cylinder-Pressure Measurement and its Use in Engine Research SAE Technical Paper 852067 1985 https://doi.org/10.4271/852067
  3. Callahan , T.J. , Yost , D.M. , and Ryan , T.W. Acquisition and Interpretation of Diesel Engine Heat Release Data SAE Technical Paper 852068 1985 https://doi.org/10.4271/852068
  4. Foster , D.E. An Overview of Zero-Dimensional Thermodynamic Models for IC Engine Data Analysis SAE Technical Paper 852070 1985 https://doi.org/10.4271/852070
  5. Hayes , T.K. , Savage , L.D. , and Sorenson , S.C. Cylinder Pressure Data Acquisition and Heat Release Analysis on a Personal Computer SAE Technical Paper 860029 1986 https://doi.org/10.4271/860029
  6. Chun , K.M. and Heywood , J.B. Estimating Heat-Release and Mass-of-Mixture Burned from Spark-Ignition Engine Pressure Data Combustion Science and Technology 54 1-6 133 143 1987 10.1080/00102208708947049
  7. Cheung , H.M. and Heywood , J.B. Evaluation of a One-Zone Burn-Rate Analysis Procedure Using Production SI Engine Pressure Data SAE Technical Paper 932749 1993 https://doi.org/10.4271/932749
  8. Homsy , S.C. and Atreya , A. An Experimental Heat Release Rate Analysis of a Diesel Engine Operating Under Steady State Conditions SAE Technical Paper 970889 1997 https://doi.org/10.4271/970889
  9. Eriksson , L. Requirements for and a Systematic Method for Identifying Heat-Release Model Parameters SAE Technical Paper 980626 1998 https://doi.org/10.4271/980626
  10. Brunt , M.F.J. , Rai , H. , and Emtage , A.L. The Calculation of Heat Release Energy from Engine Cylinder Pressure Data SAE Technical Paper 981052 1998 https://doi.org/10.4271/981052
  11. Brunt , M.F.J. and Platts , K.C. Calculation of Heat Release in Direct Injection Diesel Engines SAE Technical Paper 1999-01-0187 1999 https://doi.org/10.4271/1999-01-0187
  12. Klein , M. and Eriksson , L. A Specific Heat Ratio Model for Single-Zone Heat Release Models SAE Technical Paper 2004-01-1464 2004 https://doi.org/10.4271/2004-01-1464
  13. Rassweiler , G.M. and Withrow , L. Motion Pictures of Engine Flames Correlated with Pressure Cards SAE Technical Paper 800131 1980 https://doi.org/10.4271/800131
  14. Stone , C.R. and Green-Armytage , D.I. Comparison of Methods for the Calculation of Mass Fraction Burnt from Engine Pressure-Time Diagrams Proceedings of the Institution of Mechanical Engineers 201 1 61 67 1987 10.1243/PIME_PROC_1987_201_158_02
  15. Stone , C.R. Introduction to Internal Combustion Engines 2nd London MacMillan 1992
  16. Ball , J.K. , Raine , R.R. , and Stone , C.R. Combustion Analysis and Cycle-by-Cycle Variations in Spark Ignition Engine Combustion - Part 1: An Evaluation of Combustion Analysis Routines by Reference to Model Data Proceedings of the Institution of Mechanical Engineers: Journal of Automobile Engineering 212 5 381 399 1998 10.1243/0954407981526046
  17. Shayler , P.J. , Wiseman , M.W. , and Ma , T. Improving the Determination of Mass Fraction Burnt SAE Technical Paper 900351 1990 https://doi.org/10.4271/900351
  18. Brunt , M.F.J. and Emtage , A.L. Evaluation of Burn Rate Routines and Analysis Errors SAE Technical Paper 970037 1997 https://doi.org/10.4271/970037
  19. Mittal , M. , Zhu , G. , and Schock , H. Fast Mass-Fraction-Burned Calculation Using the Net Pressure Method for Real-Time Applications Proceeding of the Institution of Mechanical Engineers, Journal of Automobile Engineering 223 3 389 394 2009 10.1243/09544070JAUTO1006
  20. McCuiston , F.D. , Lavoie , G.A. , and Kaufmann , C.W. Validation of a Turbulent Flame Propagation Model for a Spark Ignition Engine SAE Technical Paper 770045 1977 https://doi.org/10.4271/770045
  21. Al-Himyary , T.J. and Karim , G.A. A Diagnostic Two-Zone Combustion Model for Spark-Ignition Engines Based on Pressure-Time Data SAE Technical Paper 880199 1988 https://doi.org/10.4271/880199
  22. Guezennec , Y.G. and Hamama , W. Two-Zone Heat Release Analysis of Combustion Data and Calibration of Heat Transfer Correlation in an I. C. Engine SAE Technical Paper 1999-01-0218 1999 https://doi.org/10.4271/1999-01-0218
  23. Kulzer , A. , Lejsek , D. , Kiefer , A. , and Hettinger , A. Pressure Trace Analysis Methods to Analyze Combustion Features and Cyclic Variability of Different Gasoline Combustion Concepts SAE Technical Paper 2009-01-0501 2009 https://doi.org/10.4271/2009-01-0501
  24. Eriksson , L. and Sivertsson , M. Calculation of Optimal Heat Release Rates under Constrained Conditions SAE Int. J. Engines 9 2 1143 1162 2016 https://doi.org/10.4271/2016-01-0812
  25. Jensen , T.K. and Schramm , J. A Three-Zone Heat Release Model for Combustion Analysis in a Natural Gas SI Engine - Effects of Crevices and Cyclic Variations on UHC Emissions SAE Technical Paper 2000-01-2802 2000 https://doi.org/10.4271/2000-01-2802
  26. Egnell , R. Combustion Diagnostics by Means of Multizone Heat Release Analysis and NO Calculation SAE Technical Paper 981424 1998 https://doi.org/10.4271/981424
  27. Heywood , J.B. Internal Combustion Engine Fundamentals New York McGraw-Hill 1988
  28. Conte , E. and Boulouchos , K. A Quasi-Dimensional Model for Estimating the Influence of Hydrogen-Rich Gas Addition on Turbulent Flame Speed and Flame Front Propagation in IC-SI Engines SAE Technical Paper 2005-01-0232 2005 https://doi.org/10.4271/2005-01-0232
  29. Catania , A.E. , Misul , D. , Mittica , A. , and Spessa , E. A Refined Two-Zone Heat Release Model for Combustion Analysis in SI Engines JSME International Journal Series B 46 1 75 85 2003 10.1299/jsmeb.46.75
  30. Catania , A.E. , Misul , D. , Mittica , A. , and Spessa , E. Unsteady Convection Model for Heat Release Analysis of IC Engine Pressure Data SAE Technical Paper 2000-01-1265 2000 https://doi.org/10.4271/2000-01-1265
  31. Catania , A.E. , Misul , D. , Spessa , E. , and Vassallo , A. A Diagnostic Tool for the Analysis of Heat Release, Flame Propagation Parameters and NO Formation in SI Engines The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines 2004 6 471 486 2004 10.1299/jmsesdm.2004.6.471
  32. Catania , A.E. , Misul , D. , Spessa , E. , and Vassallo , A. Analysis of Combustion Parameters and Their Relation to Operating Variables and Exhaust Emissions in an Upgraded Multivalve Bi-Fuel CNG SI Engine SAE Technical Paper 2004-01-0983 2004 https://doi.org/10.4271/2004-01-0983
  33. d’Ambrosio , S. , Misul , D. , Spessa , E. , and Vassallo , A. Evaluation of Combustion Velocities in Bi-fuel Engines by Means of an Enhanced Diagnostic Tool Based on a Quasi-Dimensional Multizone Model SAE Technical Paper 2005-01-0245 2005 https://doi.org/10.4271/2005-01-0245
  34. Rakopoulos , C.D. , Michos , C.N. , and Giakoumis , E.G. Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional Multi-Zone Combustion Model SAE Int. J. Engines 2 1 880 910 2009 https://doi.org/10.4271/2009-01-0931
  35. Ferguson , C.R. Internal Combustion Engines New York Wiley 1986
  36. Erickson , W.D. and Prabhu , R.K. Rapid Computation of Chemical Equilibrium Composition: An Application to Hydrocarbon Combustion American Institute of Chemical Engineers Journal 32 7 1079 1087 1986 10.1002/aic.690320704
  37. Rakopoulos , C.D. , Hountalas , D.T. , Tzanos , E.I. , and Taklis , G.N. A Fast Algorithm for Calculating the Composition of Diesel Combustion Products Using 11 Species Chemical Equilibrium Scheme Advances in Engineering Software 19 2 109 119 1994 10.1016/0965-9978(94)90064-7
  38. Gordon , S. , and McBride , B.J. 1994
  39. McBride , B.J. , Gordon , S. , and Reno , M.A. 1993
  40. Poulos , S.G. and Heywood , J.B. The Effect of Chamber Geometry on Spark-Ignition Engine Combustion SAE Technical Paper 830334 1983 https://doi.org/10.4271/830334
  41. Annand , W.J.D. Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engines Proceedings of the Institution of Mechanical Engineers 177 1 973 990 1963 10.1243/PIME_PROC_1963_177_069_02
  42. Keck , J.C. Turbulent Flame Structure and Speed in Spark-Ignition Engines Proceedings of the 19 th Symposium (International) on Combustion, The Combustion Institute 19 1 1451 1466 1982 10.1016/S0082-0784(82)80322-6
  43. Keck , J.C. , Heywood , J.B. , and Noske , G. Early Flame Development and Burning Rates in Spark Ignition Engines and their Cyclic Variability SAE Technical Paper 870164 1987 https://doi.org/10.4271/870164
  44. Baratta , M. , Catania , A.E. , Spessa , E. , and Vassallo , A. Flame Propagation Speed in SI Engines: Modeling and Experimental Assessment ASME ICE 2005 Fall Technical Conference Ottawa, Canada September 11-14, 2005 10.1115/ICEF2005-1216
  45. Michos , K. , Bikas , G. , and Vlaskos , I. A New Global Algebraic Model for NOx Emissions Formation in Post-Flame Gases - Application to Lean Premixed Combustion Systems SAE Technical Paper 2016-01-0803 2016 https://doi.org/10.4271/2016-01-0803
  46. Hanson , R.K. and Salimian , S. Survey of Rate Constants in the H/N/O System Gardiner , W.C. Jr. Combustion Chemistry New York Springer-Verlag 1984
  47. Smith , G.P. , Golden , D.M. , Frenklach , M. , Moriarty , N.W. , Eiteneer , B. , Goldenberg , M. , Bowman , C.T. , Hanson , R.K. , Song , S. Jr. , Gardiner , W.C. , Lissianski , V.V. , and Zhiwei , Q. http:/www.me.berkeley.edu/gri_mech
  48. Law , C.K. Combustion Physics Cambridge Cambridge University Press 2006
  49. Bikas , G. and Michos , K. Carbon Monoxide Emissions Model for Data Analytics in Internal Combustion Engine Applications Derived from Post-Flame Chemical Kinetics SAE Int. J. Engines 11 6 947 964 2018 https://doi.org/10.4271/2018-01-1153
  50. Warnatz , J. , Maas , U. , and Dibble , R.W. Combustion Berlin Springer 2006
  51. Bianco , Y. , Cheng , W.K. , and Heywood , J.B. The Effects of Initial Flame Kernel Conditions on Flame Development in SI Engine SAE Technical Paper 912402 1991 https://doi.org/10.4271/912402
  52. Gatowski , J.A. and Heywood , J.B. Flame Photographs in a Spark-Ignition Engine Combustion and Flame 56 1 71 81 1984 10.1016/0010-2180(84)90006-3
  53. Tagalian , J. and Heywood , J.B. Flame Initiation in a Spark-Ignition Engine Combustion and Flame 64 2 243 246 1986 10.1016/0010-2180(86)90062-3
  54. Raine , R.R. , Stone , C.R. , and Gould , J. Modeling of Nitric Oxide Formation in Spark Ignition Engines with a Multizone Burned Gas Combustion and Flame 102 3 241 255 1995 10.1016/0010-2180(94)00268-W
  55. Raine , R.R. , Wyszynski , L. , and Stone , R. "Modelling of NO Emissions from Homogeneous and Stratified Charge Spark Ignition Engines", Proceedings of the Institution of Mechanical Engineers Journal of Automobile Engineering 216 5 403 412 2002 10.1243/0954407021529219
  56. Rakopoulos , C.D. and Michos , C.N. Development and Validation of a Multi-Zone Combustion Model for Performance and Nitric Oxide Formation in Syngas Fueled Spark Ignition Engine Energy Conversion and Management 49 10 2924 2938 2008 10.1016/j.enconman.2008.02.011

Cited By