This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a K-k-∊ Phenomenological Model to Predict In-Cylinder Turbulence

Journal Article
2017-01-0542
ISSN: 1946-3936, e-ISSN: 1946-3944
Published March 28, 2017 by SAE International in United States
Development of a K-k-∊ Phenomenological Model to Predict In-Cylinder Turbulence
Sector:
Citation: Fogla, N., Bybee, M., Mirzaeian, M., Millo, F. et al., "Development of a K-k-∊ Phenomenological Model to Predict In-Cylinder Turbulence," SAE Int. J. Engines 10(2):562-575, 2017, https://doi.org/10.4271/2017-01-0542.
Language: English

References

  1. Borgnakke , C. , Arpaci , V. , and Tabaczynski , R. A Model for the Instantaneous Heat Transfer and Turbulence in a Spark Ignition Engine SAE Technical Paper 800287 1980 10.4271/800287
  2. Borgnakke , C. , Davis , G. , and Tabaczynski , R. Predictions of In-Cylinder Swirl Velocity and Turbulence Intensity for an Open Chamber Cup in Piston Engine SAE Technical Paper 810224 1981 10.4271/810224
  3. Morel , T. and Keribar , R. A Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-in-Piston Combustion Chambers SAE Technical Paper 850204 1985 10.4271/850204
  4. Hossein Mansouri , S. , Heywood , J. , and Radhakrishnan , K. Divided-Chamber Diesel Engine, Part I: A Cycle-Simulation Which Predicts Performance and Emissions SAE Technical Paper 820273 1982 10.4271/820273
  5. Poulos , S. and Heywood , J. The Effect of Chamber Geometry on Spark-Ignition Engine Combustion SAE Technical Paper 830334 1983 10.4271/830334
  6. Assanis , D. and Heywood , J. Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies SAE Technical Paper 860329 1986 10.4271/860329
  7. Bordet , N. , Caillol , C. , Higelin , P. , and Talon , V. A Physical 0D Combustion Model Using Tabulated Chemistry with Presumed Probability Density Function Approach for Multi-Injection Diesel Engines SAE Technical Paper 2010-01-1493 2010 10.4271/2010-01-1493
  8. Benjamin S. F. A phenomenological model for barrel swirl in reciprocating engines Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 206 1 63 71 1992
  9. Benjamin S. F. Prediction of barrel swirl and turbulence in reciprocating engines using a phenomenological model Experimental and predictive methods in engine research and development 1993
  10. Dai , W. , Newman , C. , and Davis , G. Predictions of In-Cylinder Tumble Flow and Combustion in SI Engines with a Quasi-Dimensional Model SAE Technical Paper 961962 1996 10.4271/961962
  11. Grasreiner S. , Neumann J. , Luttermann C. , Wensing M. , and Hasse C. A quasi-dimensional model of turbulence and global charge motion for spark ignition engines with fully variable valvetrains International Journal of Engine Research 15 7 805 816 2014
  12. Bozza , F. , Gimelli , A. , Merola , S. , and Vaglieco , B. Validation of a Fractal Combustion Model through Flame Imaging SAE Technical Paper 2005-01-1120 2005 10.4271/2005-01-1120
  13. Bozza , F. , Fontana , G. , Galloni , E. , and Torella , E. 3D-1D Analyses of the Turbulent Flow Field, Burning Speed and Knock Occurrence in a Turbocharged SI Engine SAE Technical Paper 2007-24-0029 2007 10.4271/2007-24-0029
  14. De Bellis , V. , Bozza , F. , Fontanesi , S. , Severi , E. et al. Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine SAE Int. J. Engines 9 1 506 519 2016 10.4271/2016-01-0545
  15. Morel , T. , Rackmil , C. , Keribar , R. , and Jennings , M. Model for Heat Transfer and Combustion In Spark Ignited Engines and its Comparison with Experiments SAE Technical Paper 880198 1988 10.4271/880198
  16. Watanabe , K. , Ito , S. , and Tsurushima , T. A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine SAE Technical Paper 2010-01-0544 2010 10.4271/2010-01-0544
  17. De Bellis V. , Severi E. , Fontanesi S. , and Bozza F. Hierarchical 1D/3D approach for the development of a turbulent combustion model applied to a VVA turbocharged engine. Part I: turbulence model Energy Procedia 45 1027 1036 2014
  18. Morel , T. and Mansour , N. Modeling of Turbulence in Internal Combustion Engines SAE Technical Paper 820040 1982 10.4271/820040
  19. Richards K. J. , Senecal P. K. , and Pomraning E. Converge 2.2.0 theory manual Convergent Sciences Inc. Madison, WI http://www.convergecfd.com 2014
  20. Wang T. , Liu D. , Tan B. , Wang G. , and Peng Z. An investigation into in-cylinder tumble flow characteristics with variable valve lift in a gasoline engine Flow, Turbulence and Combustion 94 2 285 304 2015
  21. Mirzaeian , M. , Millo , F. , and Rolando , L. Assessment of the Predictive Capabilities of a Combustion Model for a Modern Downsized Turbocharged SI Engine SAE Technical Paper 2016-01-0557 2016 10.4271/2016-01-0557
  22. Falfari , S. , Forte , C. , Brusiani , F. , Bianchi , G. et al. Development of a 0D Model Starting from Different RANS CFD Tumble Flow Fields in Order to Predict the Turbulence Evolution at Ignition Timing SAE Technical Paper 2014-32-0048 2014 10.4271/2014-32-0048
  23. Bücker , I. , Karhoff , D. , Klaas , M. , and Schröder , W. Engine In-Cylinder Flow Control via Variable Intake Valve Timing SAE Technical Paper 2013-24-0055 2013 10.4271/2013-24-0055
  24. Heywood J. B. Internal Combustion Engine Fundamentals McGraw-Hill 1988

Cited By