This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Zero-Dimensional Simulation of Diesel Engine Combustion and Emissions Based on CMC Model and Skeletal Reaction Mechanism

Journal Article
2011-01-0845
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 12, 2011 by SAE International in United States
Zero-Dimensional Simulation of Diesel Engine Combustion and Emissions Based on CMC Model and Skeletal Reaction Mechanism
Sector:
Citation: Kwon, J., Seo, J., Lee, D., and Huh, K., "Zero-Dimensional Simulation of Diesel Engine Combustion and Emissions Based on CMC Model and Skeletal Reaction Mechanism," SAE Int. J. Engines 4(1):964-975, 2011, https://doi.org/10.4271/2011-01-0845.
Language: English

Abstract:

A zero-dimensional code is developed to simulate turbulent spray combustion and NOx and soot emission in direct injection diesel engines. The code consists of two major parts; mixing calculation for the probability density function (PDF) based on the multi-zone model by Hiroyasu et al., (1983) and the flame structure by the conditional moment closure (CMC) model (Klimenko & Bilger, 1999). The skeletal mechanism of n-heptane is employed with the elementary reaction steps for heat release and the NOx chemistry in GRI 3.0. The spray model accounts for evaporation and mixing based on momentum balance of the spray zones, while the CMC model incorporates the conditional flame structures with one fuel group or flame structure for each injection. The spatially integrated density-weighted PDF, F(η), is defined to represent inhomogeneous mixture distribution in the cylinder. The one-equation soot model is employed for prediction of the soot emission. The program has been validated over a wide range of load and rpm with different injection schedules and EGR levels. Comparison shows reasonable agreement with measurements for the pressure trace and the NOx and soot emissions for all 16 cases with a single set of tuned constants.