Zero-Dimensional Simulation of Diesel Engine Combustion and Emissions Based on CMC Model and Skeletal Reaction Mechanism

Event
SAE 2011 World Congress & Exhibition
Authors Abstract
Content
A zero-dimensional code is developed to simulate turbulent spray combustion and NOx and soot emission in direct injection diesel engines. The code consists of two major parts; mixing calculation for the probability density function (PDF) based on the multi-zone model by Hiroyasu et al., (1983) and the flame structure by the conditional moment closure (CMC) model (Klimenko & Bilger, 1999). The skeletal mechanism of n-heptane is employed with the elementary reaction steps for heat release and the NOx chemistry in GRI 3.0. The spray model accounts for evaporation and mixing based on momentum balance of the spray zones, while the CMC model incorporates the conditional flame structures with one fuel group or flame structure for each injection. The spatially integrated density-weighted PDF, F(η), is defined to represent inhomogeneous mixture distribution in the cylinder. The one-equation soot model is employed for prediction of the soot emission. The program has been validated over a wide range of load and rpm with different injection schedules and EGR levels. Comparison shows reasonable agreement with measurements for the pressure trace and the NOx and soot emissions for all 16 cases with a single set of tuned constants.
Meta TagsDetails
DOI
https://doi.org/10.4271/2011-01-0845
Pages
12
Citation
Kwon, J., Seo, J., Lee, D., and Huh, K., "Zero-Dimensional Simulation of Diesel Engine Combustion and Emissions Based on CMC Model and Skeletal Reaction Mechanism," SAE Int. J. Engines 4(1):964-975, 2011, https://doi.org/10.4271/2011-01-0845.
Additional Details
Publisher
Published
Apr 12, 2011
Product Code
2011-01-0845
Content Type
Journal Article
Language
English