Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach
- Event
- Content
- The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library. We investigated typical part-load operating points and a good agreement with the experimental data for soot in the exhaust gas was achieved when accounting for acetylene feedback.
- Pages
- 16
- Citation
- Nakov, G., Mauss, F., Wenzel, P., Steiner, R. et al., "Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach," SAE Int. J. Engines 2(2):89-104, 2010, https://doi.org/10.4271/2009-01-2679.