PIV Measurements in the Swirl-Plane of a Motored Light-Duty Diesel Engine

Event
SAE 2011 World Congress & Exhibition
Authors Abstract
Content
Particle image velocimetry (PIV) is used to investigate the structure and evolution of the mean velocity field in the swirl (r-θ) plane of a motored, optically accessible diesel engine with a typical production combustion chamber geometry under motoring conditions (no fuel injection). Instantaneous velocities were measured were made at three swirl-plane heights (3 mm, 10 mm and 18 mm below the firedeck) and three swirl ratios (2.2, 3.5 and 4.5) over a range of crank angles in the compression and expansion strokes. The data allow for a direct analysis of the structures within the ensemble mean flow field, the in-cylinder swirl ratio, and the radial profile of the tangential velocity. At all three swirl ratios, the ensemble mean velocity field contains a single dominant swirl flow structure that is tilted with respect to the cylinder axis. The axis of this structure precesses about the cylinder axis in a manner that is largely insensitive to swirl ratio. Higher swirl ratios reduce the cycle-to-cycle variability in the orientation of this structure. The tangential velocity profiles are well represented by the Bessel function profile often used to initialize the tangential velocity in CFD codes. A value of 2.2 is recommended for the value of the parameter α which controls the shape of the Bessel function profile. During the compression stroke, the measured in-cylinder swirl ratios were similar to those determined from steady-state flow bench measurements. The swirl ratios decreased significantly after TDC, and continued to decline during the expansion stroke.
Meta TagsDetails
DOI
https://doi.org/10.4271/2011-01-1285
Pages
19
Citation
Petersen, B., and Miles, P., "PIV Measurements in the Swirl-Plane of a Motored Light-Duty Diesel Engine," SAE Int. J. Engines 4(1):1623-1641, 2011, https://doi.org/10.4271/2011-01-1285.
Additional Details
Publisher
Published
Apr 12, 2011
Product Code
2011-01-1285
Content Type
Journal Article
Language
English