Modes of Automated Driving System Scenario Testing: Experience Report and Recommendations

WCX SAE World Congress Experience
Authors Abstract
With the widespread development of automated driving systems (ADS), it is imperative that standardized testing methodologies be developed to assure safety and functionality. Scenario testing evaluates the behavior of an ADS-equipped subject vehicle (SV) in predefined driving scenarios. This paper compares four modes of performing such tests: closed-course testing with real actors, closed-course testing with surrogate actors, simulation testing, and closed-course testing with mixed reality. In a collaboration between the Waterloo Intelligent Systems Engineering (WISE) Lab and AAA, six automated driving scenario tests were executed on a closed course, in simulation, and in mixed reality. These tests involved the University of Waterloo’s automated vehicle, dubbed the “UW Moose”, as the SV, as well as pedestrians, other vehicles, and road debris. Drawing on both data and the experience gained from executing these test scenarios, the paper reports on the advantages and disadvantages of the four scenario testing modes, and compares them using eight criteria. It also identifies several possible implementations of mixed-reality scenario testing, including different strategies for data mixing. The paper closes with twelve recommendations for choosing among the four modes.
Meta TagsDetails
Antkiewicz, M., Kahn, M., Ala, M., Czarnecki, K. et al., "Modes of Automated Driving System Scenario Testing: Experience Report and Recommendations," SAE Int. J. Adv. & Curr. Prac. in Mobility. 2(4):2248-2266, 2020,
Additional Details
Apr 14, 2020
Product Code
Content Type
Journal Article