Investigation of the Impact of Real-World Aging on Diesel Oxidation Catalysts

SAE 2012 World Congress & Exhibition
Authors Abstract
Real-world operation of diesel oxidation catalysts (DOCs), used in a variety of aftertreatment systems, subjects these catalysts to a large number of permanent and temporary deactivation mechanisms. These include thermal damage, induced by generating exotherm on the catalyst; exposure to various inorganic species contained in engine fluids; and the effects of soot and hydrocarbons, which can mask the catalyst in certain operating modes. While some of these deactivation mechanisms can be accurately simulated in the lab, others are specific to particular engine operation regimes.
In this work, a set of DOCs, removed from prolonged service in the field, has been subjected to a detailed laboratory study. Samples obtained from various locations in these catalysts were used to characterize the extent and distribution of deactivation. The arsenal of techniques used to characterize the samples included probe reactions of NO and C₃H₆ oxidation, as well as a set of pre-treatment conditions, targeting at removing various contaminants, including hydrocarbons, soot, sulfur, and phosphorous.
Meta TagsDetails
Li, J., Szailer, T., Watts, A., Currier, N. et al., "Investigation of the Impact of Real-World Aging on Diesel Oxidation Catalysts," SAE Int. J. Engines 5(3):985-994, 2012,
Additional Details
Apr 16, 2012
Product Code
Content Type
Journal Article