Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits which may vary with temperature, state of charge, state of health, and battery operations? Where are the optimization rooms in battery design and management system without raising plating risks? Due to the complex nature of lithium plating dynamics it is hard to detect and measure the plating by any of experimental means.
In this work we developed an electrochemical model that explicitly includes lithium plating reaction. It enables both determination of plating onset and quantification of plated lithium. We have studied the effects of charging pulses on homogenous plating in order to provide guidance for lithium ion battery design in hybrid applications. By simulation a quantitative analysis of influencing factors on plating and a quantitative map of current limits to prevent lithium plating are provided. Our simulation suggests that a method that combines modeling and three electrode tests could be used to determine the true current limit map to prevent plating. Modeling are also performed to investigate the effects of coating thickness and driving cycles to illustrate the impact of design variables and applications.