Efficiency and Emissions-Optimized Operating Strategy of a High-pressure Direct Injection Hydrogen Engine for Heavy-duty Trucks

Event
SAE 2009 Powertrains Fuels and Lubricants Meeting
Authors Abstract
Content
Hydrogen engines are required to provide high thermal efficiency and low nitrogen oxide (NOx) emissions. There are many possible combinations of injection pressure, injection timing, ignition timing, lambda and EGR rate that can be used in a direct-injection system for achieving such performance. In this study, several different combinations of injection and ignition timings were classified as possible combustion regimes, and experiments were conducted to make clear the differences in combustion conditions attributable to these timings. Lambda and the EGR rate were also evaluated for achieving the desired performance, and indicated thermal efficiency of over 45% was obtained at IMEP of 0.95 MPa. It was found that a hydrogen engine with a high-pressure direct-injection system has a high potential for improving thermal efficiency and reducing NOx emissions. Different engine management strategies involving the injection pressure, injection timing, ignition timing, lambda and the EGR rate were also evaluated under a Japanese emissions test cycle. Based on the experimental results, NOx emissions and fuel economy were estimated by simulation for a heavy-duty vehicle fitted with a 6-cylinder DI hydrogen engine. An original simulation program has been developed and a simulation database has been created based on experiments conducted with a single-cylinder engine. Finally, the paper projects the potential of an engine management strategy for obtaining high output power and energy efficiency equal to the baseline diesel vehicle while also attaining low NOx emissions of 0.5 g/kWh under the emissions test cycle.
Meta TagsDetails
DOI
https://doi.org/10.4271/2009-01-2683
Pages
9
Citation
Kawamura, A., Yanai, T., Sato, Y., Naganuma, K. et al., "Efficiency and Emissions-Optimized Operating Strategy of a High-pressure Direct Injection Hydrogen Engine for Heavy-duty Trucks," SAE Int. J. Engines 2(2):132-140, 2010, https://doi.org/10.4271/2009-01-2683.
Additional Details
Publisher
Published
Nov 2, 2009
Product Code
2009-01-2683
Content Type
Journal Article
Language
English