The Effects of Injector Temperature on Spray Characteristics in Heavy-Duty Diesel Sprays

Features
Event
WCX World Congress Experience
Authors Abstract
Content
This work investigates the impact of injector temperature on the characteristics of high-pressure n-dodecane sprays under conditions relevant to heavy-duty diesel engines. Sprays are injected from a pair of single-hole diesel injectors belonging to the family of “Spray C” and “Spray D” Engine Combustion Network (ECN) injectors. Low and high injector temperature conditions are achieved by activating or deactivating a cooling jacket. We quantify spray spreading angle and penetration using high-speed shadowgraphy and long-distance microscopy imaging. We evaluate differences in fuel/air mixture formation at key timings through one-dimensional modeling. Injections from a cooled injector penetrate faster than those from a higher temperature injector, especially for an injector already prone to cavitation (Spray C). When uncooled, Spray C exhibited a time-varying spreading angle at early times during the injection event, which exacerbates the reduction in initial penetration rate relative to the cooled injector. Changes in fuel density alone cannot account for the observed trends, and we show that implementing a transient spreading angle in the model (guided by the time-sequenced images) is an effective solution to match experimental penetration characteristics. Time- and axially resolved radial mixture fractions derived from the model reveal that failure to account for early spreading angle transients and their impact on penetration and mixture formation leads to erroneous mixture fraction distributions at key timings associated with first- and second-stage ignition. Such oversights could lead the community toward incorrect model calibrations.
Meta TagsDetails
DOI
https://doi.org/10.4271/2018-01-0284
Pages
1
Citation
Daly, S., Cenker, E., Pickett, L., and Skeen, S., "The Effects of Injector Temperature on Spray Characteristics in Heavy-Duty Diesel Sprays," SAE Int. J. Engines 11(6):879-891, 2018, https://doi.org/10.4271/2018-01-0284.
Additional Details
Publisher
Published
Apr 3, 2018
Product Code
2018-01-0284
Content Type
Journal Article
Language
English