Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat

Event
SAE 2013 World Congress & Exhibition
Authors Abstract
Content
The aim of this work is to investigate the possibility of heat insulation by “Temperature Swing”, that is temperature fluctuation, on combustion chamber walls coated with low-heat-conductivity and low-heat-capacity materials.
Adiabatic engines studied in the 1980s, such as ceramic coated engines, caused constantly high temperature on combustion wall surface during the whole cycle including the intake stroke, even if it employed ceramic thermal barrier coating methods. This resulted in increase in NOx and Soot, decrease in volumetric efficiency and combustion efficiency, and facilitated the occurrence of engine knock.
On the other hand, “Temperature Swing” coat on the combustion chamber walls leads to a large change in surface temperature. In this case, the surface temperature with this insulation coat follows the transient gas temperature, which decreases heat loss with the prevention of intake air heating, and also which is expected to prevent NOx and Soot from increasing. In our calculations, the increase of the surface temperature fluctuation, “Temperature Swing” results from the coat of lower heat conductivity and lower heat capacity. Particularly in Gasoline engines, the coat with the appropriate thickness can reduce the heat flux from the wall to the working gas during intake stroke and can avoid engine knock.
Based on our calculations, it is clarified that both the prevention of intake air heating and the low heat rejection were successfully possible with the material of appropriate thermo-physical properties.
In addition to the calculations, a preliminary test-piece experiment was executed. It was demonstrated that the surface temperature of a porous coat, that is a candidate of “Temperature Swing” coat, immediately follows the transient gas temperature, and also the proposed insulation coat can exactly reduce the heat flux in the single-cylinder engine.
Meta TagsDetails
DOI
https://doi.org/10.4271/2013-01-0274
Pages
9
Citation
Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y. et al., "Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat," SAE Int. J. Engines 6(1):142-149, 2013, https://doi.org/10.4271/2013-01-0274.
Additional Details
Publisher
Published
Apr 8, 2013
Product Code
2013-01-0274
Content Type
Journal Article
Language
English