Valve ticking noises within a cam actuated valve train can arise mysteriously. One valve train may produce valve ticking noises, while a second, geometrically similar valve train may perform more quietly. To better understand this phenomena, we examine in detail the prototypical motion of a valve driven by a rocker arm with cylindrical rocker pad. General features of a valve's motion through its guide, induced by a rocker arm with a cylindrical pad, are derived. From these general features of valve motion, guide contact points during lift events can be inferred, and as a result, detailed forces and moments acting on the valve may be derived. From this derivation of forces acting on the valve, a metric for assessing the propensity of a valve train to tick as a result of the valve stem impacting its guide is proposed. The proposed metric indicates how the likelihood of valve tick noise can be reduced through judicious choices for valve train geometries, clearances and surface finishes.