Analysis of Motor Vibration Isolation System with Focus on Mount Resonances for Application to Electric Vehicles

Event
SAE 2015 Noise and Vibration Conference and Exhibition
Authors Abstract
Content
The vibration isolation effectiveness of powertrain mount configurations is examined for electric vehicle application by considering the effect introduced by internal mount resonances. Unlike internal combustion engines where mounts are typically designed only for static support and low frequency dynamics, electric motors have higher excitation frequencies in a range where mount resonances often occur. The problem is first analytically formulated by considering a simple 3-dimensional powertrain system, and the vibration isolation effectiveness significantly deteriorates at the mount resonance(s). It is shown that by modifying the mount shape, the mount resonance(s) can be shifted while maintaining the same static rate, tuning the frequency away from any engine excitation or natural frequencies. Further, internal mount resonances are utilized to improve vibration isolation over a narrow frequency range, using non-identical mounts to split mount resonance peaks. Then a computational model for a realistic drive unit (containing electric motor, power invertor, and gearbox) is considered. The mount resonance phenomenon is replicated in the computational model, and the effect on non-identical mounts is again examined. Finally, 3 and 4-point mounting schemes are compared, and their parameters (if selected properly) exhibit better vibration isolation over a tunable frequency range of interest.
Meta TagsDetails
DOI
https://doi.org/10.4271/2015-01-2364
Pages
8
Citation
Zeng, X., Liette, J., Noll, S., and Singh, R., "Analysis of Motor Vibration Isolation System with Focus on Mount Resonances for Application to Electric Vehicles," SAE Int. J. Alt. Power. 4(2):370-377, 2015, https://doi.org/10.4271/2015-01-2364.
Additional Details
Publisher
Published
Jun 15, 2015
Product Code
2015-01-2364
Content Type
Journal Article
Language
English