Over the last decades, a new class of reusable temporary fasteners having expanding mandrels have come to market. Their large-scale implementation has resulted in these fasteners being utilized in high shear stress environments resulting in the identification of several limitations. Parts shifting as a result of shear forces in the airframe assembly during temporary fastener installation or removal can cause current mandrel-based fasteners to become damaged and difficult to remove from the hole. Additionally, enhanced fastener shear resistance is desirable in very high shear forces environments.
This paper examines current mandrel based temporary fasteners while also examining two new concepts in reusable temporary fasteners that are specifically designed to offer mitigations to the aforementioned limitations.