Your Selections

Trailers
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Multi body dynamic simulation of tyre traction trailer

International Centre for Automotive Technology-Gopal Singh Rathore
  • Technical Paper
  • 2019-28-2430
Published 2019-11-21 by SAE International in United States
Tyre Traction Trailer is a device designed to find the Peak Brake co-efficient of C2 and C3 tyre as per ECE R117. The trailer is towed by the truck and is braked suddenly to evaluate braking co-efficient of specimen tyre. It is a single wheel trailer equipped with load cell to capture tire loads (Normal and longitudinal)while braking. Traction Trailer is modelled in MSC Adams and rigid body simulation is carried out for static stability of the system. Dynamic simulations were performed to understand locking of wheels during braking. Body frame was further modelled as flex body to perform structural analysis of the frame. The paper contains stress and deformation plots of trailer Structure under various loading conditions, change in Centre of gravity, weight transfer and forces on springs during braking and cornering, plots of tractive and normal load on tyre during braking.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Research on the Control Strategy of Trailer Tracking Tractor for Articulated Heavy Vehicles

China-Hongyu Zheng
Jilin University-Kaiqiang Pan, Jianjun Wu
Published 2019-11-04 by SAE International in United States
The purpose of this paper is to improve the path-following capability and high-speed lateral stability of the articulated heavy vehicles (AHVs). The six-axle heavy articulated vehicle was taken as the research object, in order to simplify the control design, the three-axle trailer of the articulated vehicles was simplified to a single-axle trailer. The Newton's second law was applied to the tractor unit and the single-axle trailer unit respectively, a three-degree-of-freedom vehicle yaw plane model was established, and its state space equation was derived. The trailer steering controller was designed by linear quadratic regulator (LQR) technique. At the same time, the optimal index function was determined by combining the vehicle state variables, and the optimal control input was obtained by using the algebraic Riccati equation. In order to achieve better control of the trailer unit, the relationship of the Ackerman steering geometry is used to obtain the ideal angle of each tire of the trailer unit. Co-simulation of low-speed steady circular motion and double lane change motion in Matlab/Simulink and Trucksim was carried out to verify…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Heavy Tractor Semi-Trailer Stability Control Strategy Based on Electronic Pneumatic Braking System HIL Test

SAE International Journal of Vehicle Dynamics, Stability, and NVH

Aptiv PLC, USA-Bin Li
State Key Laboratory of Automotive Simulation and Control, Jilin University, China-Hongyu Zheng, Yangyang Miao
  • Journal Article
  • 10-03-03-0016
Published 2019-10-15 by SAE International in United States
Aiming to improve the handling performance of heavy tractor semi-trailer during turning or changing lanes at high speed, a hierarchical structure controller is proposed and a hardware-in-the-loop (HIL) test bench of the electronic pneumatic braking system is developed to validate the proposed controller. In the upper controller, a Kalman filter observer based on the heavy tractor semi-trailer dynamic model is used to estimate the yaw rates and sideslip angles of the tractor and trailer. Simultaneously, a sliding mode direct yaw moment controller is developed, which takes the estimated yaw rates and sideslip angles and the reference values calculated by the three-degrees-of-freedom dynamic model of the heavy tractor semi-trailer as the control inputs. In the lower controller, the additional yaw moments of tractor and trailer are transformed into corresponding wheel braking forces according to the current steering characteristics. The HIL test bench of the electronic pneumatic braking system is built to verify the effectiveness of the strategy. Double lane-change maneuver, sinusoidal maneuver, and J-turn maneuver are selected as handling and stability test conditions. The LabView real-time…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Antilock Brake Systems Energy Consumption Test Procedure for Air-Brake-Equipped Truck Tractors, Buses, Trailers, and Dollies

Truck and Bus Brake Systems Committee
  • Ground Vehicle Standard
  • J2255_201910
  • Current
Published 2019-10-07 by SAE International in United States
This SAE Recommended Practice provides instructions and test procedures for measuring air consumption of air braked vehicles equipped with Antilock Brake Systems (ABS) used on highways.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Setting Preload in Heavy-Duty Wheel Bearings

Truck and Bus Wheel Committee
  • Ground Vehicle Standard
  • J2535_201910
  • Current
Published 2019-10-07 by SAE International in United States
This SAE Recommended Practice applies to the four primary, large volume applications in the class 7-8 heavy-duty market place, as specified in SAE J1842: a “N” trailer axle b “R” powered rear axle c “FF / FG” nonpowered front axle d “P” trailer axle This document applies to on-highway applications. It is not applicable to those applications that exceed the GAWR ratings or the load line restrictions listed in columns “A,” “B,” and “C” of Table 1. Load lines are measured from the inboard bearing cup backface as shown in 3.4. This document establishes preload force values only. The methodology to obtain these force values must be determined by the fastener supplier and/or axle assembler. This document reviews the bearing system. It is NOT intended to prescribe (new or existing) axle and/or hub manufacturers’ ratings and/or specifications.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Analysis of the Tractor-Trailer Dynamics during Braking

Kharkov National Auto and Highway University-Mikhail Podrigalo, Dmytro Klets, Mykhailo Kholodov, Valeriy Klimenko, Anton Kholodov
Zhytomyr State Technological University-Volodymyr Rudzinskyi
Published 2019-09-15 by SAE International in United States
The intensive development of tractor-building industry in the world has led to the widespread use of wheeled tractors and tractor trains in transportations on public highways. This requires an increase of engine capacity and speed of tractor trains, as well as strict demands for their braking systems.The formation of the necessary braking properties of wheeled tractors and tractor trains on their basis should be carried out at the design phase, taking into account a wide range of aggregated machines and tools.Blocking the wheels of the trailer with different sequence of their blocking and blocking the wheels of the tractor has significant impact on the total braking force, deceleration and stability of the tractor train. It is advisable to take this into account when modeling the braking process of a tractor train.The article deals with the braking dynamics of the tractor train and the impact of the dynamic distribution of normal reactions between the axles on the brake properties of the tractor train. The mathematical model of the braking process of the tractor-trailer train (consisting of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

Ford Motor Company-Silvia Faria Iombriller, Wesley Bolognesi Prado, Marco Andre Silva
Published 2019-09-15 by SAE International in United States
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers.ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events.Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year.In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.On 2015, NHTSA published Federal Motor Vehicle Safety Standard (FMVSS) No. 136, Electronic Stability Control systems for heavy vehicles, requiring Electronic Stability Control (ESC) systems on truck tractors and buses with a gross vehicle weight rating greater than 11,793 kilograms (26,000 pounds) for implementation in 2017.In South America, CONTRAN Resolution 641/2016 establishes mandatory installation of Electronic Stability and Rollover Control in Commercial…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Braking with a Trailer and Mountain Pass Descent

General Motors LLC-David B. Antanaitis, Brent Lowe
Published 2019-09-15 by SAE International in United States
A truly strange - but very interesting - juxtaposition of thought occurs when considering customer’s deceleration needs for towing heavy trailers in mountainous regions, and the seemingly very different area of sizing brakes for Battery Electric Vehicles (BEV) and other regenerative braking-intensive vehicle applications, versus brakes for heavy-duty trucks and other vehicles rated to tow heavy trailers. The common threads between these two very different categories of vehicles include (a) heavy dependence on the powertrain and other non-brake sources of energy loss to control the speed of the vehicle on the grade and ensure adequate capacity of the brake system, (b) a need to consider descent conditions where towing a heavy trailer is feasible (in the case of heavy trailer towing) or initiating a descent with a full state of charge is realistic (in the case of BEVs), which forces consideration of different descents versus the typical (for brake engineers) mountain peak descent. In this paper, a vehicle operator-based requirement is derived that integrates engine (or motor), transmission (or gearbox), driveline, brake system, brake cooling,…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Truck and Bus Aerodynamic Device and Concept Terminology

Truck and Bus Aerodynamics and Fuel Economy Committee
  • Ground Vehicle Standard
  • J2971_201908
  • Current
Published 2019-08-02 by SAE International in United States
This SAE J2971 Recommended Practice describes a standard naming convention of aerodynamic devices and technologies used to control aerodynamic forces on truck and buses weighing more than 10000 pounds (including trailers).
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Combination of Intelligent Tire and Vehicle Dynamic Based Algorithm to Estimate the Tire-Road Friction

SAE International Journal of Passenger Cars - Mechanical Systems

NIO, USA-Omid Ghasemalizadeh
Texas State University, USA-Seyedmeysam Khaleghian
  • Journal Article
  • 06-12-02-0007
Published 2019-04-08 by SAE International in United States
One of the most important factors affecting the performance of vehicle active chassis control systems is the tire-road friction coefficient. Accurate estimation of the friction coefficient can lead to better performance of these controllers. In this study, a new three-step friction estimation algorithm, based on intelligent tire concept, is proposed, which is a combination of experiment-based and vehicle dynamic based approaches. In the first step of the proposed algorithm, the normal load is estimated using a trained Artificial Neural Network (ANN). The network was trained using the experimental data collected using a portable tire testing trailer. In the second step of the algorithm, the tire forces and the wheel longitudinal velocity are estimated through a two-step Kalman filter. Then, in the last step, using the estimated tire normal load and longitudinal and lateral forces, the friction coefficient can be estimated. To evaluate the performance of the algorithm, experiments were performed using the trailer test setup and friction was calculated using the measured forces. Good agreement was observed between the estimated and actual friction coefficients.
This content contains downloadable datasets
Annotation ability available