The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Test procedures
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Development and Evaluation of Optimal Fingerprint Authentication Algorithm in Vehicle Use Environment

Hyundai Motor Co & KIA Motors Corp.-Dae Sung Jin, Jungduck Son, Sangwoo Jeon
  • Technical Paper
  • 2020-01-0723
To be published on 2020-04-14 by SAE International in United States
Hyundai Motor Company mass-produced the world's first fingerprint entry and start system. This paper is a study on the evaluation method to develop and verify the optimal fingerprint authentication algorithm for vehicle usage conditions. Currently, fingerprint sensors and algorithms in the IT industry have been developed for the electronic devices, and are not suitable for the harsh environment of the vehicle and the vehicle life cycle for more than 10 years. In order to optimize the fingerprint sensor and algorithm for the vehicle, this study consisted of 3way test methods. As a result, the fingerprint system could be optimized for the vehicle and the recognition rate and security could be optimized according to the sensor authentication level. Through this study, the fingerprint entry and start system achieved the recognition rate development goal (door handle sensor recognition rate: 85% or more, start button sensor recognition rate: 90% or more) and achieved security that meets European immobilizer regulation
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A New Testing Method to Evaluate Edge Cracking With Considerations of The Shear Clearance and Press Speed

EWI, Inc.-Jiahui Gu, Laura Zoller, Hyunok Kim
  • Technical Paper
  • 2020-01-0758
To be published on 2020-04-14 by SAE International in United States
As the automotive industry increasingly adopts the more use of Advanced High Strength Steel (AHSS) for the vehicle light-weighting and crashworthiness, the edge cracking issue continuously increases in stamping AHSS. Different lab-scale test methods such as the ISO standard hole-expansion test and the half specimen dome test are available to evaluate edge formability. However, none of these lab-scale testing methods fully considers production conditions such as various shear clearances, part complexity, and shearing speed associated with the mechanical or hydraulic press operation. To address these limitations of the available testing methods, a new punching and stamping test was developed. This paper introduces the simulation and experimental approach in developing this unique testing method to design the peanut-shaped hole that is the most sensitive to edge cracking in stamping. Three different sheet materials, DP780, 980 GEN3, and aluminum 6022-T4 were tested to validate the reliability of the newly developed testing method. Selected materials were punched with two different shear clearances between 10~20% that are commonly used for industrial applications. Also, two different press motions, conventional mechanical…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

NHTSA's 2018 Heavy Vehicle Automatic Emergency Braking Test Track Research Results

NHTSA-Devin Elsasser
Transportation Research Center Inc.-M. Kamel Salaani, Christopher Boday
  • Technical Paper
  • 2020-01-1001
To be published on 2020-04-14 by SAE International in United States
This paper presents National Highway Traffic Safety Administration’s 2017 and 2018 test track research results with heavy vehicles equipped with forward collision warning and automatic emergency braking systems. Newly developed objective test procedures were used to perform and collect performance data with three single-unit trucks equipped with the crash avoidance systems. The results of this research show that the test procedures are applicable to many heavy vehicles and indicate that performance improvements in heavy vehicles equipped with these safety systems can be objectively measured.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Scalable Simulation Environment for Adaptive Cruise Controller Development

The University Of Alabama-David Barnes, Jared Folden, Hwan-Sik Yoon, Paulius Puzinauskas
  • Technical Paper
  • 2020-01-1359
To be published on 2020-04-14 by SAE International in United States
In the development of an Adaptive Cruise Control (ACC) system, a model-based design process uses a simulation environment with models for sensor data, sensor fusion, ACC, and vehicle dynamics. Previous work has sought to control the dynamics between two vehicles both in simulation and empirical testing environments. This paper outlines a new modular simulation framework for full model- based design integration to iteratively design ACC systems. The simulation framework uses physics-based vehicle models to test ACC systems in three ways. The first two are Model-in-the-Loop (MIL) testing, using scripted scenarios or Driver-in-the-Loop (DIL) control of a target vehicle. The third testing method uses collected test data replayed as inputs to the simulation to additionally test sensor fusion algorithms. The simulation framework uses 3D visualization of the vehicles and implements mathematical driver comfortability models to better understand the perspectives of the driver or passenger. The addition of a high-fidelity vehicle plant model provides energy consumption and emissions predictions for autonomous conventional or hybrid electric vehicles (HEV) in realistic driving scenarios. Finally, the simulations are run for…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

Infineum Japan, Ltd.-Taisuke Miyoshi
JXTG Nippon Oil & Energy Corp.-Satoru Yoshida
  • Technical Paper
  • 2020-01-1426
To be published on 2020-04-14 by SAE International in United States
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used. The fuel-saving performance and engine protection performance of four reference oils (two of them SAE 0W-8, the other two SAE 0W-16) and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Testing of a wet plate clutch system for anti-shudder performance

Afton Chemical Corp.-Philippe Ezanno
BorgWarner Automotive-Jason Bares
  • Technical Paper
  • 2020-01-0560
To be published on 2020-04-14 by SAE International in United States
The wet clutch system ( WCS ) is a complex combination of friction plates, separator plates and lubricant. The basic function of the WCS is to transfer torque under various operating conditions such as slipping, shifting, start/launch and/or torque converter clutch operation. During these conditions the slope of the coefficient of friction versus slip speed ( µ-V ) curve must be positive to prevent shudder of the WCS. A test procedure is needed to evaluate the WCS over a durability duty cycle to monitor the µ-V curve slope and shudder potential. The clutch plates and fluid must be tested together and remain together during the test to evaluate as a WCS. The objective of this paper is to describe this new test procedure which builds on the basics of the SAE J2964 - Low Speed Continuous Slip µ-PVT test procedure but a duty cycle is added to age the WCS. The test includes measurement of the µ-V slope at several intervals during the test ( before break in, after break in, and after each 12…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Experimental Methodology for Measuring Resistance Forces of Light-Duty Vehicles under Real-World Conditions and the Impact on Fuel Consumption

Aristotle University of Thessaloniki-Dimitrios Komnos, Leonidas Ntziachristos
European Commission Joint Research-Georgios Fontaras, Jelica Pavlovic, Biagio Ciuffo
  • Technical Paper
  • 2020-01-0383
To be published on 2020-04-14 by SAE International in United States
A vital element of any vehicle-certification test is the use of representative values for the vehicle resistance forces. In most certification procedures, including the WLTP recently adopted by the EU, the latter is achieved mainly through coast down tests. Subsequently, the resistance values measured are used for setting up the chassis-dyno resistances applied during the laboratory measurements. These reference values are obtained under controlled conditions, while a series of corrections are applied to make the test procedure more repeatable and reproducible. In real driving, the actual vehicle road loads are influenced by a series of factors leading to a divergence between the certified fuel consumption values, and the real-world ones. An approach of calculating representative road loads during on-road tests can help to obtain a more unobstructed view of vehicle efficiency and, when needed, confirm the officially declared road loads. This approach is also essential for validating simulations and achieving better estimates of the actual fuel consumption, a requirement introduced by the new policy adopted in the EU. In this study, a series of on-road…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Different Methods to Improve the Exhaust Gas Temperature in Modern Stage V Off-Road Diesel Engine over Transient Emission Cycles

Turku University of Applied Sciences-Mika Lauren, Toomas Karhu, Miika Laivola, Jan Ekman
University of Vaasa-Seppo Niemi, Kirsi Spoof-Tuomi
  • Technical Paper
  • 2020-01-0903
To be published on 2020-04-14 by SAE International in United States
This paper presents several methods to improve the exhaust gas temperature of a modern diesel engine. A high exhaust gas temperature is needed to improve the after-treatment system efficiency and particulate filter regeneration in low engine loads. This study is based on experimental measurements of two Stage 5 level off-road diesel engines. The effect of the different heating methods determined over steady state runs and emission and performance are presented with standard emission transient test procedure (NRTC). In the first step of the study, an intake air restriction and an exhaust gas restriction method are compared. The intake restriction produces better fuel economy over the measuring cycle. However, with the exhaust restriction, higher exhaust gas temperature can be achieved in low engine loads. In the second phase of study, the intake air restriction method was implemented in the research engine. In addition, active waste gate controlling, and injection retardation methods were taken in use for heating purposes. The engine performance was determined with normal calibration and with high exhaust temperature calibration. The differences to the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Controls Overview on Achieving Ultra-Low NOx

Southwest Research Institute-Sandesh Rao, Jayant Sarlashkar, Sankar Rengarajan, Christopher Sharp, Gary Neely
  • Technical Paper
  • 2020-01-1404
To be published on 2020-04-14 by SAE International in United States
The California Air Resources Board (CARB)-funded Stage 3 Heavy-Duty Low NOX program focusses on evaluating different engine and after-treatment technologies to achieve 0.02g/bhp-hr of NOX emission over certification cycles. This paper highlights the controls architecture of the engine and after-treatment systems and discusses the effects of various strategies implemented and tested in an engine test cell over various heavy-duty drive cycles. A Cylinder De-Activation (CDA) system enabled engine was integrated with an advanced after-treatment controller and system package. Southwest Research Institute (SwRI) had implemented a model-based controller for the Selective Catalytic Reduction (SCR) system in the CARB Stage 1 Low-NOX program. The chemical kinetics for the model-based controller were further tuned and implemented in order to accurately represent the reactions for the catalysts used in this program. Novel dosing, and ammonia storage management strategies augmented with the model-based controls was critical in achieving the objectives of this program. Results for Heavy-Duty-Federal Test Procedure (HD-FTP), Ramp Mode Cycle (RMC) and Low Load Cycle (LLC) are presented with a focus on controller features and characteristics that enabled…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Characterization of Seat Lateral Support as a Mechanical Behavior

General Motors LLC-Bonita Thomas
OBannon Technologies-Terry O'Bannon
  • Technical Paper
  • 2020-01-0870
To be published on 2020-04-14 by SAE International in United States
Seat lateral support is often talked about as a design parameter, but usually in terms of psychological perception. There are many difficulties in quantifying lateral support mechanically to the engineering teams: Anthropometric variation causes different people to interact with the seat in different places and at different angles, BPD studies are usually planar and don’t distinguish between horizontal support and vertical resistance to sinking in, most mechanical test systems are typically single-DOF and can’t apply vertical and horizontal loads concurrently, and there is scant literature describing the actual lateral loads occupants. In this study, we characterize the actual lateral loading on example seating (both driver and passenger, as passenger experience will become more important as autonomous vehicles evolve) from various sized/ shaped occupants according to dynamic pressure distribution. From this information, a six-DOF load and position control test robot (KUKA OccuBot) is used to replicate that pressure distribution. The effect of various sizes and shapes of indenters is explored. In the spirit of the appendix of SAE standard J2896, we suggest some standard mechanical test…