Your Selections

Tensile strength
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

NoPo Nanotechnologies India Pvt Ltd-Aparna Allannavar
NoPo Nanotechnologies India Pvt, Ltd.-Gadhadar Changalaraya Reddy
  • Technical Paper
  • 2019-28-2532
To be published on 2019-11-21 by SAE International in United States
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance. Here we report results of our work with NoPo HiPCO® Nanotubes with small amounts of Iron. 6K Carbon fiber was used as the fiber reinforcement. NoPo HiPCO® Nanotubes were reinforced in the Epoxy system by sonication. HiPCO® Nanotubes were produced using standard parameters. The coupons of CENCE composite were made using VARTM…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Mechanical Property Evaluation of Paper Honeycomb reinforced Plastics

Hyundai Motor India Engineering PVT LTD-Vignesh balaji S G, Pradeep S, Aakash S K
  • Technical Paper
  • 2019-28-2538
To be published on 2019-11-21 by SAE International in United States
Mechanical Property Evaluation of Paper Honeycomb Reinforced Plastics Vignesh Balaji S G, Pradeep Hyundai Motor India Engineering Pvt. Ltd, Chennai. India Key Words: Paper Honeycomb, Epoxy Composites, Mechanical Properties, Tensile, Impact & Flexural Test Research and/or Engineering Questions/Objective : Composite Materials are widely being used in many engineering applications because of their desirable properties & Cost, Weight Effectiveness. They are widely being used as their Strength-Weight Ratio is Higher than any Other Material. Paper Honeycomb Material is basically a paper made of honeycomb shapes enforced between layers of Glass Mat. This paper deals with the evaluation of Tensile Strength, Flexural (Three-Point Bending) Strength & Flexural Modulus, Impact Strength of Paper Honeycomb Reinforced Epoxy Composites. The Scope of this Material defines the quality of Paper Honeycomb Reinforced Composites which can be used for Automotive Trim Parts. Methodology: Before beginning the tests, the specimens should be prepared and the steps for the preparation of paper honeycomb reinforced epoxy composites are shown below: 1. Mould Preparation 2. Mixing of Epoxy and Hardener with a ratio of 10:1 3.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle

FORCE MOTORS, Pune , India.-Pradeep C
Sri Krishna College of Engg and Tech-Soundararajan R, Sathish Kumar K, Shanthosh G
  • Technical Paper
  • 2019-28-2572
To be published on 2019-11-21 by SAE International in United States
A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle Research Objective This paper presents a hybrid composite brake disc with reduced Un Sprung Weight clearing thermal and structural analysis in a formula vehicle.Main purpose of this study is to analyse thermomechanical behaviour of composite brake disc for a formula vehicle under severe braking conditions. Methodology In the disk brake system, the disc is a major part of a device used for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking condition. Based on the practical understanding the brake disc was remodelled with unique slotting patterns and grooves, using the selected aluminium alloy of (AA8081) with reinforcement particle of Silicon carbide (SiC) and Graphite (Gr) as a hybrid composite material for this proposed work. In First Phase of this Project work, By varying slotting pattern and groove angles the transient thermal and structural analysis using ANSYS workbench ,the hybrid composite disc plate of disk brake is done.The…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

High rigidity and light weight bumper material development in India

Honda Cars India Limited-manu sharma
  • Technical Paper
  • 2019-28-2553
To be published on 2019-11-21 by SAE International in United States
Vehicle weight reduction becomes important at the view point of fuel efficiency improvement and CO2 reduction in India also as well as developed countries. With this background, High tensile and Super high tensile steel application has become increasing. Similary, weight reduction of big plastic parts like bumper face is one of the most important items, so Honda has developed Thin-wall and light weight bumper face. In the development of light weight bumper, rigidity, impact strength and flowability which are main requirement are cotradictory property. It is necessary to develop new material to achieve this technical concern. Moreover, we verified part shape and thickness optimization to achieve part requirement. Established high property material and part manufacturing technology were applied for current CITY firstly, and it has been expanded to other models sequentially to contribute weight reduction for Honda vehicles. In this report, we report the analysis and verification result example of high rigidity and light weight bumper material development in India.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Employing natural plant based fiber in interior automotive parts for cost & weight benefit

Vivekanandhan-Vivekanandhan Venkatesan Balaguru
  • Technical Paper
  • 2019-28-2559
To be published on 2019-11-21 by SAE International in United States
The Automotive industry is in ever more need for a lesser weight car due to progressively stringent emission norms and the demand of customer to have better mileage. It can be a gargantuan challenge for automotive manufacturers to search for lesser weight material to meet both customers as well as regulatory norms. But in some cases such lower weight material can increase the cost and adding a expensive material which increases overall cost to a price sensitive market like India is not favorable. One such solution is using the indigenous plant fiber (Jute) in combination with propylene (PP) to make Interior plastics components. Jute a vegetable fiber also referred to as "the golden fiber" has high tensile strength, low extensibility and is well established in fabric, packing, agriculture, construction industries. The biodegradable Jute lesser weight & abundance (India is the leading manufacturer of the Jute) can be utilized in making automobile trim parts in India. Through this paper we will have insight of the natural fiber based plastic components the benefits (lesser weight, Less GSM…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

SIMULATION OF SOFTENING AND RUPTURE IN MULTILAYERED FUEL TANK MATERIAL

General Motors Technical Center India-Vijaya Kumar R L, Biswajit Tripathy, Jayaraj Radhakrishnan
  • Technical Paper
  • 2019-28-2557
To be published on 2019-11-21 by SAE International in United States
Research and/or Engineering Questions/Objective Plastic automotive fuel tanks made up of blow molded, multi-layered, high-density polyethylene (HDPE) material can take complex shapes with varying thickness. Accidental drop of fuel tank from a height during handling can lead to development of cracks. Damage can also occur due to an impact during a crash. This can be catastrophic due to flammability of the fuel. The objective of this work is to characterize and develop a failure model for the fuel tank material to simulate damage and enhance predictive capability of CAE for chassis and safety load cases. Methodology Different aspects were considered to develop a characterization and modelling strategy for the HDPE fuel tank. Material properties can be influenced by factors such as, service temperature, rate of deformation, state of stress etc. Hence, samples cut-out from different regions of the fuel tank were subjected to a variety of tests such as tensile test at different strain rates viz. 0.01/s, 0.1/s, 1/s, 10/s and 100/s, compression, shear, flexure and instrumented dart impact tests at different temperatures, -40°C, 23°C…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Analysis of Natural Fibre Reinforced Epoxy Composites for Automobile Hood

SRM Institute Of Science And Technology-Akhil Kumar Guduru, V N B Prasad Sodisetty, Vidya Prudhvi Sai Katari
  • Technical Paper
  • 2019-28-0086
To be published on 2019-10-11 by SAE International in United States
The need for eco-friendly materials is recently increasing in the automobile and aerospace sectors. Material selection for automobile components is influenced by various factors such as cost, weight and strength. Natural fibers offers various advantages over conventional materials such as environmental friendly, easily available, recyclable and higher specific strength. Among the natural fibers Sisal and Kenaf fibers are selected for present study due to their good mechanical properties and availability. Kenaf fibers have great potential to be used as construction and automotive materials due to their long fibers which are derived from the bast. Sisal fibers do not absorb moisture and possess good impact, sound absorbing properties and high fire resistance properties. Epoxy LY556 is selected as matrix material to bind the combination of these two natural fibers due to its high temperature resistance and adherence to reinforcements. Alkaline treatment was carried out to remove the moisture from the natural fibers. Fabrication of epoxy/Kenaf fibre/Sisal Fibre composite materials of different stacking sequence was carried out by Vacuum Assisted Resin Transfer Molding (VARTM) method. These composites…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation of Metallurgical and Mechanical Properties of Hastelloy X by Key-Hole Plasma Arc Welding Process

Vellore Institute of Technology-Mathiyazhagan Sathishkumar, Chooriyaparambil Damodaran Naiju, Manoharan Manikandan
  • Technical Paper
  • 2019-28-0152
To be published on 2019-10-11 by SAE International in United States
This research work describes the effect of microsegregation, microstructure and tensile strength of the Hastelloy X weldment produced by keyhole plasma arc welding (K-PAW). Weld joint was obtained in a single pass without the addition of filler wire. The significant results obtained in this research work are (i) fine equiaxed dendrite was detected in the weld centre due to lesser heat input (HI) along with the faster solidification attained in K-PAW (ii) The existence of secondary precipitates in the interdendritic boundary was identified by the scanning electron microscope (SEM) analysis (iii) Energy dispersive X-ray spectroscope (EDS) revealed the Cr and Mo microsegregation in interdendritic boundary of the weld zone (iv) X-ray diffraction (XRD) analysis confirmed the Mo-rich P phase and Cr-rich M23C6 phase. The observed tensile strength of weldment is 6.14 % inferior to base metal. The development of secondary precipitates in the weld zone affected the tensile properties of the weld joint.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Tensile and Fatigue Behavior of Shallow Cryogenically Treated EN19 Alloy Steel

BSACIST-Loganathan Sekar, Tamil Arasan
SRM Institute of Science and Technology-Rajendran Raj
  • Technical Paper
  • 2019-28-0100
To be published on 2019-10-11 by SAE International in United States
Tensile and axial fatigue tests were conducted on shallow cryogenically treated EN19 medium carbon alloy steel to investigate its mechanical behavior. The test samples were conventionally heat treated then oil quenched at room temperature. Followed by the samples were kept for shallow cryogenic treatment to -80°C for 8 hours using liquid nitrogen. Then the samples were tempered in a muffle furnace to relieve the induced residual stresses. Tensile and axial fatigue test were carried out on both treated and non-treated samples to measure its tensile strength and fatigue behavior respectively. Microscopic examination also had done to compare the effect of shallow cryogenic treatment on its microstructure. The results exposed that there is an increase in the tensile strength and reduction in fatigue life of shallow cryogenically treated samples over base metal and improved wear resistance.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Comparative Study on Microstructures and Mechanical Properties of Al-GNPs Composites Fabricated by Casting Method

Sree Vidyanikethan Engineering College-Bhanu Prakash Palampalle, Krishnamachary Pattipati Chinna, Binoj Joseph Selvi
  • Technical Paper
  • 2019-28-0139
To be published on 2019-10-11 by SAE International in United States
This paper describes an investigation on microstructures as well as mechanical properties of pure aluminium graphene nano platelets (GNPs) metal matrix composites prepared via novel based stir casting technique combined with ultrasonic treatment. The proportion of graphene changes from 0.5 to 2.0 wt. % in aluminium with 99% purity. The investigations on composites revealed that Al with combination of 1.0 % graphene composite showcased enhanced mechanical properties with 48.49 % (~49%) increase in tensile strength and 34.53 % (~35%) increase in micro hardness compared to test results of composites produced by traditional stir casting technique. FESEM analysis was done to examine the surface morphology of produced composite and fracture surface of tested composites where as XRD analysis was to inspect the phase analysis of produced composites. It reveals that, through cavitational effect there was a uniform distribution of graphene in aluminium matrix and composites were casted with less porosity due to which there is significant enhancement in mechanical properties compare to composites produced by stir casting technique