Your Selections

Stability control
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Vehicle Control History: Data from Driver Input and Pre-Collision System Activation Events on Toyota Vehicles

Toyota Motor North America-Lance Lewis
Toyota Motor North America, Inc.-Barry Hare, Harold Clyde, Robert Landis
  • Technical Paper
  • 2019-01-5094
Published 2019-12-30 by SAE International in United States
Separate from the event data recorder (EDR), which records and stores data from qualifying vehicle crash events, the Vehicle Control History (VCH) on Toyota vehicles records and stores certain vehicle data based on select driver inputs, such as hard acceleration or braking, or upon the activation of certain vehicle dynamic control systems such as antilock braking system (ABS), traction control (TRAC), vehicle stability control (VSC), and the pre-collision system (PCS). In the United States, VCH was first equipped on the 2013 Toyota RAV4 and has been subsequently introduced into other Toyota and Lexus models. Most recently, in addition to VCH data, additional PCS operational data (PCS-O) and image data (PCS-I) may be recorded and stored. The image storage capability may record under certain conditions such as if the system has automatically applied the vehicle brakes. PCS-O and PCS-I data became available with the launch of Toyota Safety Sense (TSS), a grouping of advanced active safety features equipped on many Toyota vehicles generally available in 2017. Multiple dynamic tests with a 2017 Toyota Corolla were performed…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Comparative Study on ESC Drive and Brake Control Based on Hierarchical Structure for Four-Wheel Hub-Motor-Driven Vehicle

Wuhan University of Technology-Chen Lin, Xiaofei Pei, Xuexun Guo
Published 2019-11-04 by SAE International in United States
Electronic Stability Control (ESC) is an important measure to proactively guarantee vehicle safety. In this paper, the method of four-wheel hub-motor torque control is compared with the traditional single-wheel hydraulic brake control in ESC system. The control strategy adopts the hierarchical structure. In upper controller, the stability of the vehicle is identified by threshold method, the additional yaw moment control uses a way to get the moment including feedforward and feedback parts based on the linear quadratic regulator (LQR). The medium controller is tire slip rate control, in order to get the optimal target slip rate from the upper additional yaw moment, a method of quadratic programming to optimize the longitudinal force is proposed for each wheel. The inputs of tire state for the magic tire model is introduced so as to calculate the target slip rate from the target longitudinal force. The lower controller is wheel cylinder pressure control and motor torque control which is realized by Carsim ideal control. Finally, through Co-simulation of Carsim/Simulink in the condition of open steering wheel loop for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Heavy Tractor Semi-Trailer Stability Control Strategy Based on Electronic Pneumatic Braking System HIL Test

SAE International Journal of Vehicle Dynamics, Stability, and NVH

Aptiv PLC, USA-Bin Li
State Key Laboratory of Automotive Simulation and Control, Jilin University, China-Hongyu Zheng, Yangyang Miao
  • Journal Article
  • 10-03-03-0016
Published 2019-10-15 by SAE International in United States
Aiming to improve the handling performance of heavy tractor semi-trailer during turning or changing lanes at high speed, a hierarchical structure controller is proposed and a hardware-in-the-loop (HIL) test bench of the electronic pneumatic braking system is developed to validate the proposed controller. In the upper controller, a Kalman filter observer based on the heavy tractor semi-trailer dynamic model is used to estimate the yaw rates and sideslip angles of the tractor and trailer. Simultaneously, a sliding mode direct yaw moment controller is developed, which takes the estimated yaw rates and sideslip angles and the reference values calculated by the three-degrees-of-freedom dynamic model of the heavy tractor semi-trailer as the control inputs. In the lower controller, the additional yaw moments of tractor and trailer are transformed into corresponding wheel braking forces according to the current steering characteristics. The HIL test bench of the electronic pneumatic braking system is built to verify the effectiveness of the strategy. Double lane-change maneuver, sinusoidal maneuver, and J-turn maneuver are selected as handling and stability test conditions. The LabView real-time…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modelling and Validation of a Control Algorithm for Yaw Stability & Body Slip Control Using PID & Fuzzy Logic Based Controllers

SITAMS-Chellappan Kavitha
VIT University-Umashankar Lath, Sanyam Kakkar, Aman Agarwal, Bragadeshwaran Ashok, Vemuluri Ramesh Babu, Sathiaseelan Denis Ashok
Published 2019-10-11 by SAE International in United States
Advanced driver-assistance systems (ADAS) are becoming an essential part of the modern commercial automobile industry. Vehicle handling and stability are determined by the yaw rate and body slip of the vehicle. This paper is a comparative study of a nonlinear vehicle stability control algorithms for steering control based on two different controllers i.e. fuzzy logic based controller and PID controller. A full vehicle 14DOF model was made in Simulink to simulate an actual vehicle. The control algorithms are based on a two-track 7-DOF model with a non-linear tire model based on Pacejka “Magic tire formula”, which was used to establish the desired response of a full vehicle 14DOF model. It was found that the fuzzy logic-based control algorithm demonstrated an overall superior performance characteristic than a PID based control algorithm; this includes a significant decrease in time lag and overshoot. The proposed control algorithms were validated through the co-simulation of Carsim and Simulink in real time.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Braking Requirements for Optimizing Autonomous Emergency Braking Performance

Applus IDIADA-Álvaro Esquer Molina, Jordi Bargallo
Published 2019-09-15 by SAE International in United States
Vehicle technology new developments have contributed to improve vehicle structural performance and therefore passive protection, but also the inclusion of electronic control units has provided new opportunities to expand active safety systems. This is the case for systems like anti-lock braking systems (ABS), electronic stability control (ESC) and brake assist (BA) among others. A more advanced generation of active systems includes sensorial units that monitor vehicle’s surrounding and detect potential hazards, such as an imminent collision, and performs an automatically and commanded emergency braking to lessen or mitigate the consequences of the impending accident. For this latest system, the so-called autonomous emergency braking (AEB), various consumer testing protocols, such as Euro NCAP protocols [1], propose and periodically update test catalogues in order to evaluate the performance of such systems and later to inform potential consumers.The aim of this study is to investigate the means of improving AEB performance in terms of efficiency and driver acceptance. For this, performance of current AEB system will be studied and compared with the limits of vehicle’s braking capabilities.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

Ford Motor Company-Silvia Faria Iombriller, Wesley Bolognesi Prado, Marco Andre Silva
Published 2019-09-15 by SAE International in United States
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers.ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events.Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year.In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.On 2015, NHTSA published Federal Motor Vehicle Safety Standard (FMVSS) No. 136, Electronic Stability Control systems for heavy vehicles, requiring Electronic Stability Control (ESC) systems on truck tractors and buses with a gross vehicle weight rating greater than 11,793 kilograms (26,000 pounds) for implementation in 2017.In South America, CONTRAN Resolution 641/2016 establishes mandatory installation of Electronic Stability and Rollover Control in Commercial…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Estimation of Side Slip Angle Interacting Multiple Bicycle Models Approach for Vehicle Stability Control

Andong National University-Bongchoon Jang
Chassis R&D-Youngjin Hyun
Published 2019-04-02 by SAE International in United States
This paper presents an Interacting Multiple Model (IMM) based side slip angle estimation method to estimate side slip angle under various road conditions for vehicle stability control. Knowledge of the side slip angle is essential enhancing vehicle handling and stability. For the estimation of the side slip angles in previous researches, prior knowledge of tire parameters and road conditions have been employed, and sometimes additional sensors have been needed. These prior knowledge and additional sensors, however, necessitates many efforts and make an application of the estimation algorithm difficult. In this paper, side slip angle has been estimated using on-board vehicle sensors such as yaw rate and lateral acceleration sensors. The proposed estimation algorithm integrates the estimates from multiple Kalman filters based on the multiple models with different parameter set. The IMM approach enables a side slip angle estimation from originally equipped vehicle sensors without prior knowledge of tire and road. The proposed estimation algorithm is evaluated via vehicle tests in electronic control unit level. The results have shown that the proposed estimator can successfully estimate…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Has Electronic Stability Control Reduced Rollover Crashes?

Toyota Motor Corp.-Rini Sherony
Virginia Tech-Luke Riexinger, Hampton Gabler
Published 2019-04-02 by SAE International in United States
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development.All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events. The Insurance Institute for Highway Safety ESC availability database was matched to each NASS/CDS case vehicle by the vehicle make, model, and model year. ESC effectiveness was computed using the quasi-induced exposure method.From 2006-2015, control loss was a factor in 29.7%…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

FMVSS 126 Sine with Dwell ESC Regulation Test for Autonomous Vehicles

Ohio State University-Evan Lowe, Sheng Zhu, Bilin Aksun Guvenc, Levent Guvenc
Published 2019-04-02 by SAE International in United States
Electronic stability control (ESC) has been an essential part of road vehicle safety for almost three decades. In April of 2007, the United States federal government issued a regulation to test the validity of ESC in development vehicles, and the regulation is called Federal Motor Vehicle Safety Standards (FMVSS) 126 in North America (NA), and an equivalent test in other countries outside of NA called ECE13-H (Economic Commission for Europe). While these standards have been used to certify ESC in development passenger cars for over a decade, this has not yet been scrutinized for the application of autonomous vehicles. Autonomous cars have sensors and control systems which can be used to improve ESC, where commercial standard vehicles do not. In this manuscript, we explored how an autonomous vehicle could complete the FMVSS 126 regulation, on its own, without a human driver, and discussed whether the FMVSS 126 (also called Sine with Dwell) test remains a useful regulation for autonomous cars. Additionally, we described a potential general obstacle avoidance capability assessment (GOACA) which could be a…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Development of the Model Based Torque Feedback Control with Disturbance Observer for Electric Power Steering System

Hyundai Motor Company-Deukpyo Lee, Yun Gab Lo, Minwoo Han, Kyuwon Kim, Chulhee Kim
Published 2019-04-02 by SAE International in United States
Electric Power Steering (EPS) needs to meet both functional and stability requirements, it plays significant role in controlling vehicle motion. In the meantime, customers emphasizes natural steering feel which can reflect vehicle motion and road surface information while isolate unwanted external disturbances. In general, conventional EPS control algorithms exert assist torque according to driver torque measured from torque sensor, while maintaining stability using stabilizing compensator. However, there exist significant trade-off between steering feel and stability, because the performances of assist torque control and stabilizing compensator are strongly coupled. In this paper a torque feedback control algorithm for EPS system is proposed in order to overcome the trade-off, and to achieve more natural, robust steering feel. The torque feedback algorithm consists of two main components; target torque generator, target torque following controller which can decouple steering feel and stability control performances. Target torque generator defines desired driver torque based on estimated road reaction torque; the road reaction torque estimation is carried out using EPS system dynamics model. Target torque following controller based on lead-lag compensator controls…
This content contains downloadable datasets
Annotation ability available