Your Selections

Solar energy
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Extended Endurance Unmanned Aerial Vehicle via Structural Electrical Power Storage and Energy Generation Devices

Geoffrey Smith Oetting
  • Technical Paper
  • 2020-01-0041
To be published on 2020-03-10 by SAE International in United States
Through the substitution of some aircraft structural components with power storage and generation devices that possess adequate structural strength and stiffness, flight endurance time and performance of solar powered unmanned aerial vehicles (UAV’s) may be increased by reducing the parasitic weight penalties of the power systems. This innovation of the ‘Flying Battery’ along with energy generation devices such as structural solar cells, thermo-electric generators, and vibration induced power generators are integral to creating a flying structure that will be more efficient and more useful to the electric powered commercial and hobby markets. This paper discusses plans and the progress toward achieving potential endurance and efficiency increases in unmanned aerial vehicles through laboratory and eventual model flight experiments of novel structural designs for graphene super-capacitors, solar cells, and other power generation devices.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells

Aerospace & Defense Technology: December 2019

  • Magazine Article
  • 19AERP12_07
Published 2019-12-01 by SAE International in United States

Metal matrix composites, which consist of silver-multiwalled carbon nanotube-silver, layer-by-layer stacks, can electrically bridge the cracks (>40 μm) that appear in semiconductor substrates and the composite grid lines.

The current trend in both space and terrestrial photovoltaics is to implement high-efficiency, thin-film-based solar cells to reduce weight and materials cost while improving performance. For space photovoltaics, multi-junction (MJ) solar cells have been used almost exclusively due to their high efficiency and high radiation hardness. The efficiency of state-of-practice triple-junction (TJ) cells used in space today is approximately 30% under 1-sun Air Mass 0 (AM0) spectrum.

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Analysis of Sigma Z-Source Inverter for PV Applications

SRM Institute Of Science And Technology-Kalaiarasi Nallathambi, Uthra Rangarajan, Anitha Daniel
Published 2019-10-11 by SAE International in United States
Traditional Voltage Source Inverter (VSI) produces lesser output voltage than the input and causes shoot-through due to the gating of the semiconductor device connected in same leg. The ZSI is used to overcome the inadequacies of VSI. The ZSI has been extensively used in electric drives, PV system and UPS. The conventional ZSI suffers some disadvantages like restricted boost capability, discontinuity in input current and large inrush current. These limitations are overcome by using a transformer which replaces the inductor in the impedance source network. In high-voltage gain applications, the single transformer-based ZSI topologies requires more turns ratio which requires large size transformer. For improving the boost capability, the TZSI is used. The Z-source network of the TZSI constitutes two transformers with low turns ratio. TZSI has certain demerits such as restricted boost capability, high inrush current and discontinuity in the input current. However, TZSI requires high turns ratio to increase the boost capability. Thus, the modified ZSI, i.e. sigma ZSI is investigated in this paper. The sigma ZSI has the advantage of having reduced…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Amelioration of Modular Mobility by Adopting Split Cell Solar Panel Cleaning and Cooling Thereof

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Ajith Raja, Arunpragash Mohana Sundaram, Ashwanth Pranav Selvamani
Published 2019-10-11 by SAE International in United States
In the photovoltaic system, the efficiency of solar cells is determined by the combination of latitude and climate. The electricity generation in the photovoltaic cell is more in the morning time than in the afternoon time. This is due to the fact that an increase in solar cell temperature leads to a decrease in efficiency of the solar panel. This work aims to provide necessary cooling to the solar panel for favorable output during noon time. Normally electrical modular vehicles use non-split cell solar panels. In order to increase the efficiency, we are using a split cell solar panel as it increases the voltage by halving the size of the silicon chips. Thus, having the cells results in increasing efficiency and lowering the operation temperature. The solar panel should be maintained at a particular temperature by adopting sprinkling of water method in solar panel for hybrid vehicles. The proposed system consists of a storage tank, radiator, temperature sensor, water sprinkle jets attached to the hybrid vehicle. When the temperature increases beyond the limit, the temperature…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Highly Decorative, Lightweight Flexible Solar Cells for Automotive Applications

Ritsumeikan University-Mikiya Inoue, Jakapan Chantana, Takashi Minemoto
Toyota Motor Corporation-Taizo Masuda, Yuki Kudo
Published 2019-04-02 by SAE International in United States
The strict CO2 emission limit for passenger cars have been set by US, EU, Japan, China and other countries. In order to meet the requirement, it is essential to develop an alternative power source for the future cars. Power generation by solar panels is a promising renewable energy candidate because the most environmentally friendly vehicles such as electric vehicles and plug-in hybrid vehicles are equipped with large-capacity batteries that can be charged with electricity generated by solar panels. The requirements for the solar panels are paintable with desired color and to be lightweight. In this study, we developed a simple lift-off process for producing colorful and lightweight Cu(In,Ga)Se2 (CIGS) solar cells for future automotive application. Our measurements show that the developed lift-off process can provide the lightweight solar panel that have nearly identical performance compared to that of the cell before the lift-off process. The colors were generated on the cells by coating the highly transparent automotive paint. We demonstrate a bright, uniform, and solid appearance on the solar cells with small output power reduction…
Annotation ability available

Material Removes Ice Buildup Without Power or Chemicals

  • Magazine Article
  • TBMG-33680
Published 2019-02-01 by Tech Briefs Media Group in United States

From airplane wings, to overhead power lines, to the giant blades of wind turbines, a buildup of ice can cause problems ranging from impaired performance all the way to catastrophic failure. Preventing that buildup usually requires energy-intensive heating systems or chemical sprays that are environmentally harmful.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design, Simulation and Validation of Front End Auxiliary Drive (FEAD) Mounting Bracket for Electric Powertrain Application

VE Commercial Vehicles Ltd-Kamal Rohilla, Suresh Kumar Kandreegula, Saurabh Agrawal, Jasvir Bisht, Pungaraj Muthaiah
Published 2019-01-09 by SAE International in United States
The main driving force behind recent innovations in automotive sector is the need to decrease the dependability on fossil fuels and move towards alternative sources for energy. While there is still substantial scope for improvement in conventional diesel and petrol engine based powertrains, the inherent dependency on limited and rapidly depleting carbon based fuels make their long term usage impractical highlighting the need for alternative non-conventional powertrain setups.In the recent past, electric powertrains have come out as favorable alternative as they are extremely flexible in adopting to scenarios where energy for use might be drawn from multiple sources such as solar power, hydroelectric, nuclear reaction, etc. The advantages can further be magnified by adopting the electric power based powertrains in mass transportation application such as bus application. However, the adoption of electric power based powertrains requires a complete redesign of powertrain mounting architecture.This study is specifically focused on redesigning the Front End Accessory Drive (FEAD) mounting bracket for bus application. The new design will also include the provision for the mounting of prime mover (electric…
This content contains downloadable datasets
Annotation ability available

Thermochromic Windows Convert Sunlight into Electricity

  • Magazine Article
  • TBMG-33415
Published 2018-12-01 by Tech Briefs Media Group in United States

Relying on advanced materials such as perovskites and single-walled carbon nano-tubes, a window technology was developed that responds to heat by transforming from transparent to tinted. As the window darkens, it generates electricity. The color change is driven by molecules (methylamine) that are reversibly absorbed into the device. When solar energy heats up the device, the molecules are driven out, and the device is darkened. When the Sun is not shining, the device is cooled back down, and the molecules re-absorb into the window device, which then appears transparent.

Alternating Current Photovoltaic Building Block

  • Magazine Article
  • TBMG-33402
Published 2018-12-01 by Tech Briefs Media Group in United States

Today's photovoltaic power systems are generally comprised of a single photovoltaic module or multiple modules connected by combinations of series and parallel circuits as a photovoltaic array. In the case of a single-module system producing alternating current (AC) power output, the photovoltaic module is connected to the inverter or load through a junction box (J-box) that incorporates a fuse to protect the photovoltaic module if backfeeding from other sources (e g; a power utility or a battery) is possible. The photovoltaic modules used in these systems are configured either with or without a frame. Frameless photovoltaic modules are generally referred to as a laminate. For conventional systems that utilize multiple laminates or modules, the laminates or modules are interconnected via junction boxes or flying leads and external wiring that must be rated sunlight-resistant and sized to carry the rated currents. Some conventional photovoltaic system installations require that the direct current (DC) and AC wiring be installed in properly sized and anchored conduit.

Quantum Dots Monitor Brain Activity

  • Magazine Article
  • TBMG-33263
Published 2018-11-01 by Tech Briefs Media Group in United States

Luminescent quantum dots are finding new and exciting applications in current nano-science research, including improved solar energy collectors, LEDs, and quantum computers. A recent thrust from the U.S. Naval Research Laboratory's Nanoscience Institute is focused on applying them as tools for neuroscience, opening the doors for a new way to observe brain activity and its functions.