Your Selections

Single cylinder engines
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Reduction of a diesel engine NO emissions using the exhaust gas recirculation technique

Centro Universitário de Belo Horizonte - UniBH-Alex de Oliveira, Alexandre Pinheiro Bernardes, Flávio Ferreira
  • Technical Paper
  • 2019-36-0067
Published 2020-01-13 by SAE International in United States
This paper analyses the effects of the application of the exhaust gas recirculation (EGR) technique in a stationary, single cylinder engine aiming to reduce the emissions of nitrogen oxides (NOx). The engine was operated with diesel oil containing 8% biodiesel (B8) for different load and EGR rates. The engine emissions of carbon monoxide (CO), carbon dioxide (CO2) and nitric oxide (NO) operating without the EGR system were compared with the operation with EGR rates of 15% and 25%. The results revealed that the increase in the EGR rate increased the exhaust gas temperature, the engine specific fuel consumption and the CO and CO2 emissions, but with reduction of up to 72% of NO emissions, when using 25% of EGR rate.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

In-cylinder flow design based on the representative scales of turbulence and premixed combustion

Nissan Motor Co., Ltd.-Yuko Mito, Taisuke Shiraishi, Atsushi Teraji
  • Technical Paper
  • 2019-01-2210
Published 2019-12-19 by SAE International in United States
Dilution combustion with exhaust gas recirculation (EGR) has been applied for the improvement of thermal efficiency. In order to stabilize the high diluted combustion, it is important to form an appropriate turbulence in the combustion cylinder. Turbulent intensity needs to be strengthened to increase the combustion speed, while too strong turbulence causes ignition instability. In this study, the factor of combustion instability under high diluted conditions was analyzed by using single cylinder engine test, optical engine test and 3D CFD simulation. Finally, methodology of in-cylinder flow design is attempted to build without any function by taking into account the representative scales of turbulence and premixed combustion.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Using RON Synergistic Effects to Formulate Fuels for Better Fuel Economy and Lower CO2 Emissions

ICARE-CNRS, INSIS-Andrea Comandini, Nabiha Chaumeix
IFP Energies nouvelles-David Serrano, Laurie Starck
  • Technical Paper
  • 2019-01-2155
Published 2019-12-19 by SAE International in United States
The knock resistance of gasoline is a key factor to decrease the specific fuel consumption and CO2 emissions of modern turbocharged spark ignition engines. For this purpose, high RON and octane sensitivity (S) are needed.This study shows a relevant synergistic effect on RON and S when formulating a fuel with isooctane, cyclopentane and aromatics, the mixtures reaching RON levels well beyond the ones of individual components. The same is observed when measuring their knock resistance on a boosted single cylinder engine.The mixtures were also characterized on a rapid compression machine at 700 K and 850 K, a shock tube at 1000 K, an instrumented and an adapted CFR engine. The components responsible for the synergistic effects are thus identified. Furthermore, the correlations plotted between these experiments results disclose our current understanding on the origin of these synergistic effects.This study concludes that this synergistic effect encourages formulating highly paraffinic fuels for lower specific fuel consumptions and CO2 emissions. Thus, paraffins are still relevant compounds to formulate highly efficient gasolines, despite their low octane sensitivity when individually…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Study on PCCI Combustion Control in Medium Speed Dual-Fuel Engine

Yanmar Co., Ltd.-Kazuteru Toshinaga, Masaki Kuribayashi
  • Technical Paper
  • 2019-01-2176
Published 2019-12-19 by SAE International in United States
To achieve simultaneous reduction of CO2 and NOx emission from the Dual-Fuel (DF) engine using natural gas and diesel fuel, Premixed Charge Compression Ignition (PCCI) type combustion is a promising technology. However, to apply this technology to the practical operation of the DF engine, combustion control is key challenge because the ignition of PCCI type combustion is governed by chemical reaction of natural gas/air and diesel fuel premixture and not controlled by direct control parameter such as spark timing of spark-ignition natural gas engine or diesel fuel injection timing of micro-pilot type DF engine. The focus of this study is to understand the effect of engine control parameters on DF-PCCI combustion characteristics to establish the combustion control strategy in medium speed DF engine. Engine experiments using a 4-stroke medium speed single cylinder engine were carried out. Firstly, early two stage diesel pilot injection was applied to realize DF-PCCI combustion. As a result, brake thermal efficiency was successfully improved by 2%pt compared with conventional micro-pilot combustion while achieving low NOx emission to meet the stringent emission…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Imaging and Simulation of Oil Transport Phenomena in the Upper Piston Skirt Region

Daimler AG-Jonathan Schöler, Sebastian Schiefer, Stefan Wigger, Hans-Jürgen Füßer, Volker Lagemann
University of Duisburg-Essen-Sebastian A. Kaiser
  • Technical Paper
  • 2019-01-2359
Published 2019-12-19 by SAE International in United States
The oil transport phenomena in the chamfer beneath the oil control ring of a piston in a motored engine were investigated with a combined experimental-numerical approach. High-speed laser-induced fluorescence was used to visualize the oil distribution crank-angle-resolved on both thrust side and anti-thrust side of an optically accessible single cylinder engine. Corresponding three-dimensional volume-of-fluid CFD simulations were calibrated with the experiment and then utilized to analyze the cross sectional flows in the chamfer. Phenomena triggered by inertial forces and the lateral piston motion, e.g. oil transport from the piston to the liner (bridging) and the formation of a circular flow in the chamfer, are described in detail.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Hydrogen as a Combustion Enhancer for Highly Efficient Ultra-Lean Spark-Ignition Engines

IFP Energies nouvelles, Institut Carnot IFPEN TE-Jean-Marc Zaccardi, Guillaume Pilla
  • Technical Paper
  • 2019-01-2258
Published 2019-12-19 by SAE International in United States
Performance of lean burn gasoline spark-ignition engines can be enhanced through hydrogen supplementation. Thanks to its physicochemical properties, hydrogen supports the flame propagation and extends the dilution limits with improved combustion stability. These interesting features usually result in decreased emissions and improved efficiencies which is of the utmost importance for future SI engines targeting ultra-lean conditions at λ ≥ 2 and brake thermal efficiencies above 50%. Compared to previous studies of hydrogen supplementation, this article aims at demonstrating how hydrogen can support the combustion process with a modern combustion system optimized for extreme dilution rates and high efficiency.Experimental investigations performed with a single cylinder engine are reported and show that the minimal amount of hydrogen required to reach λ = 2 is in the range of 2 to 4% of the total intake volume flow rate. At low load, NOx emissions can be lowered down to 33 ppm at λ = 2 and results also show that a10-fold decrease in NOx emissions is possible when the dilution rate increases from the lean limit without hydrogen…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

CI Methanol and Ethanol combustion using ignition improver

Chalmers University of Technology-Saccullo Michael, Benham Timothy, Denbratt Ingemar
King Abdullah University of Science and Technology-Johansson Bengt
  • Technical Paper
  • 2019-01-2232
Published 2019-12-19 by SAE International in United States
To act on global warming, CO2 emissions must be reduced. This will require a reduction in the use of fossil fuels for transportation. Because of the large quantities of fossil fuels used in transportation, sources of renewable fuels other than biomass will have to be explored, such as electrofuels synthesized from CO2 using renewable electricity. Potential electrofuels include methanol and ethanol, which have shown promising results in SI engines. However, their low cetane numbers make these fuels unsuitable for CI engines because of their poor auto-ignition qualities. The main objective of this study was to evaluate the viability of using methanol and ethanol in CI engines at compression ratios of 16.7 and 20 with a pilot-main injection strategy in the PPC/CI regime. Single cylinder engine tests on a heavy duty engine were performed under medium load conditions (1262 rpm and 172 Nm). The higher compression ratio generated significantly better indicated thermal efficiencies, lower brake-specific NOx emissions, and less combustion noise. Soot emissions were well below current tailpipe emission limits in all cases.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Motorcycle Terminology

Motorcycle Technical Steering Committee
  • Ground Vehicle Standard
  • J3133_201909
  • Current
Published 2019-09-24 by SAE International in United States
The motorcycle terminology presented herein addresses two-wheel single track vehicles, as well as motorized three wheel cycles. Although two-wheeled, single track scooters and mopeds are similar to traditional motorcycles, they have many characteristics which differentiate them from motorcycles, and while some terms will apply, this Terminology addresses motorcycles specifically, unless otherwise noted. Likewise, some three wheel cycles may have some similar design features and share components with motorcycle, the dynamics and handling of three wheel vehicles differs from two wheel, single track motorcycles. The terminology presents definitions covering the following subjects: dynamics and handling of single track vehicles, motorcycle categories and types, motorcycle crash dynamics and technology, and in-depth crash investigations, motorcycle design and components, systems, and equipment, motorcycle operation, operational environments and hazards, rider protective equipment including helmets and clothing, rider behaviors, motorcycle safety, competitive motorcycle events and the specialized motorcycles used those events, key national motorcycle-related organization, selected phrases commonly used uniquely by motorcyclists, and related performance measures and selected test criteria. NOTE: Motorcycle emission terminology does not vary from automobile emission terminology…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Assessment of Ozone Addition Potential in Direct Injection Compression Ignition Engines

IFP Energies nouvelles-Institut Carnot-Michele Bardi, Guillaume Pilla, Mickaël Matrat
Published 2019-09-09 by SAE International in United States
The potential of ozone addition in compression ignition engines is investigated experimentally in this paper. Experiments were carried out in an optically accessible single cylinder engine equipped with a common rail direct injection system. A commercially available ozone generator (P < 100W) was used to add to the intake flow a controlled amount of ozone.EU Diesel fuel (cetane number 52) and a Naphtha fuel (cetane number 33) were tested investigating the impact of Ozone in conventional diesel combustion and LTC cases (e.g. high exhaust gas recirculation rate).Minimal ozone concentration in the intake flow (100 ppm) demonstrated to reduce significantly the ignition delay. However, the impact observed strongly depends on the engine conditions tested and, in general, this effect observed becomes significant in conditions characterized by a long ignition delay: low intake temperature, high dilution, and low cetane number fuel.Significant practical benefits of ozone addition were found for engine cold-start, where ozone yields a significant reduction in misfire events during the first cycle and a faster stabilization of the combustion phasing and a reduction of the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Mixing Timescale Model for PDF Simulations of LTC Combustion Process in Internal Combustion Engines

Istituto Motori CNR-Ezio Mancaruso, Bianca Maria Vaglieco
University of Versailles Saint Quentin-Fadila Maroteaux
Published 2019-09-09 by SAE International in United States
Transported probability density function (PDF) methods are currently being pursued as a viable approach to model the effects of turbulent mixing and mixture stratification, especially for new alternative combustion modes as for example Homogeneous Charge Compression ignition (HCCI) which is one of the advanced low temperature combustion (LTC) concepts. Recently, they have been applied to simple engine configurations to demonstrate the importance of accurate accounting for turbulence/chemistry interactions. PDF methods can explicitly account for the turbulent fluctuations in species composition and temperature relative to mean value. The choice of the mixing model is an important aspect of PDF approach. Different mixing models can be found in the literature, the most popular is the IEM model (Interaction by Exchange with the Mean). This model is very similar to the LMSE model (Linear Mean Square Estimation). Other models are available in the literature, e.g. the MC model (Modified Curl model), the EMST model (Euclidian Minimum Spanning Tree) and the PMSR model (Pairwise Mixing Stirred Reactor). The IEM and the LMSE models relax scalar values in each particle…
This content contains downloadable datasets
Annotation ability available