The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Sensors and actuators
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of the Active Sound Generation Technology using Motor Driven Power Steering System

Hyundai Motor Co.-Kyoung-Jin Chang
Mdynamix AG-Leonhard Angerpointner, Dominik Schubert, Matthias Niegl
  • Technical Paper
  • 2020-01-1536
To be published on 2020-06-03 by SAE International in United States
As original engine sound is usually not enough to satisfy the driver’s desire for the sporty and fascinating sound, active noise control (ANC) and active sound design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicle using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifier or external actuators. This paper presents a new technology of generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) which is already mounted in vehicle. Firstly, an algorithm of this technology, called an active sound generation (ASG), is introduced with those signal conversion process, and then the high frequency noise issue and its countermeasure are presented. Secondly, ASG test bench is designed using a motor driven power steering (MDPS) system and then it is checked if ASG has any influence on an original function of MDPS. Thirdly, motor-induced vibration is measured in the transfer path and then the appropriate level…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fault Diagnosis of an Engine through Analyzing Vibration Signals on the Block

Hyundai Motor Group-Jaemin Jin, Insoo Jung
Kookmin University-Sung-Hwan Shin PhD
  • Technical Paper
  • 2020-01-1568
To be published on 2020-06-03 by SAE International in United States
Unpredictable faults oriented from ambiguous reasons could occur in an engine of a vehicle. However, there are some symptoms from which an engine is working abnormally before the engine is stalled by faults. In this paper, methods for diagnosis of engine faults by using vibrations are proposed. Through bench tests, to extract features for fault diagnosis, various samples with normal and abnormal conditions are prepared and vibration signals from the block of an engine are measured and analyzed. To consider cost and performance of a sensor, vibrations from a knock sensor signal as well as accelerometers are analyzed. Measured vibration signals are synchronized with signal of the crank position sensor and analyzed to detect which event is involved. Modulation analysis and Hilbert transform are applied to extract features representing the symptoms of engine faults and to indicate when the abnormal event happens, respectively. As a result, the mean value of modulation indexes at modulated frequencies called as the half order modulation index (HOMI) is a factor determining if an engine is abnormal and envelope of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Reinforcement of Low-Frequency Sound by Using a Panel Speaker Attached to the Roof Panel of a Passenger Car

Hyundai Motor Company-Munhwan Cho
Korea Advanced Inst of Science & Tech-Ki-Ho Lee, Jeong-Guon Ih
  • Technical Paper
  • 2020-01-1570
To be published on 2020-06-03 by SAE International in United States
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53ⅹ0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators. The shape of the desired speaker zone is an ellipse, and the required amplitude of this piston source is…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Development and Evaluation of Optimal Fingerprint Authentication Algorithm in Vehicle Use Environment

Hyundai Motor Co & KIA Motors Corp.-Dae Sung Jin, Jungduck Son, Sangwoo Jeon
  • Technical Paper
  • 2020-01-0723
To be published on 2020-04-14 by SAE International in United States
Hyundai Motor Company mass-produced the world's first fingerprint entry and start system. This paper is a study on the evaluation method to develop and verify the optimal fingerprint authentication algorithm for vehicle usage conditions. Currently, fingerprint sensors and algorithms in the IT industry have been developed for the electronic devices, and are not suitable for the harsh environment of the vehicle and the vehicle life cycle for more than 10 years. In order to optimize the fingerprint sensor and algorithm for the vehicle, this study consisted of 3way test methods. As a result, the fingerprint system could be optimized for the vehicle and the recognition rate and security could be optimized according to the sensor authentication level. Through this study, the fingerprint entry and start system achieved the recognition rate development goal (door handle sensor recognition rate: 85% or more, start button sensor recognition rate: 90% or more) and achieved security that meets European immobilizer regulation
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Alleviating the Magnetic Effects on Magnetometers using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

Michigan Technological University-Ahammad Basha Dudekula, Jeffrey D. Naber
  • Technical Paper
  • 2020-01-1025
To be published on 2020-04-14 by SAE International in United States
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement. The present work focuses on alleviating magnetic disturbances for ground vehicles by fusing the vehicle kinematics information with IMU senor in an Extended Kalman filter (EKF) with the vehicle orientation represented using Quaternions. In addition, the error in rate measurements from gyro sensor gets accumulated as the time progress which results in drift in rate measurements and thus affecting the vehicle…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Autonomous Vehicle Multi-Sensors Localization in Unstructured Environment

FEV North America Inc.-Qusay Alrousan, Hamzeh Alzu'bi, Andrew Pfeil, Tom Tasky
  • Technical Paper
  • 2020-01-1029
To be published on 2020-04-14 by SAE International in United States
Autonomous driving in unstructured environments is a significant challenge due to the inconsistency of important information for localization such as lane markings. To reduce the uncertainty of vehicle localization in such environments, sensor fusion of LiDAR, Radar, Camera, GPS/IMU, and Odometry sensors is utilized. This paper discusses a hybrid localization technique developed using: LiDAR based Simultaneous Localization and Mapping (SLAM), GPS/IMU and Odometry data, and object lists from Radar and Camera sensors. An Extended Kalman Filter (EKF) is utilized to fuse data from all sensors in two phases. In the preliminary stage, the SLAM-based vehicle coordinates are fused with the GPS-based positioning. The output of this stage is then fused with the objects-based localization. This approach was successfully tested on FEV’s Smart Vehicle Demonstrator at FEV’s HQ representing a complicated test environment with dynamic and static objects. The test results show that multi-sensor fusion improves the vehicle’s localization compared to GPS or LiDAR alone.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Automated Lane Change Assist on Energy Consumption

Embry-Riddle Aeronautical University-Casey Troxler, Patrick Currier, Charles Reinholtz
  • Technical Paper
  • 2020-01-0082
To be published on 2020-04-14 by SAE International in United States
Automated lane change assist combined with adaptive cruise control has the potential to reduce energy consumption and improve safety. This paper models adaptive cruise control combined with automated lane change assist to investigate the energy consumption improvements that such a system may provide compared to conventional adaptive cruise control. Automatically executing a lane change may improve efficiency, for example, when following a vehicle that is slowing to make a turn. Changing lanes while maintaining speed should be more efficient than staying in the same lane as the turning vehicle and reducing speed. The differences in such scenarios are simulated in a virtual environment using a cuboid model with idealized sensors. The ego-vehicle will detect scenarios, evaluate if a lane change is feasible, and possibly perform a lane change to reduce or eliminate required speed changes. The results of the simulations compare the energy content of the resulting drive cycle as an idealized method to measure energy consumption for each cruise control strategy. The simulations consider traffic laws, such as turn signal requirements that may dictate…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Vehicle Velocity Prediction Using Artificial Neural Network and Effect of Real World Signals on Prediction Window.

Colorado State University-Aaron Rabinowitz, Thomas Bradley
Western Michigan University-Tushar Gaikwad, Farhang Motallebiaraghi, Zachary Asher, Alvis Fong, Rick Meyer
  • Technical Paper
  • 2020-01-0729
To be published on 2020-04-14 by SAE International in United States
Prediction of vehicle velocity is important since it can realize improvements in the fuel economy/energy efficiency, drivability and safety. Velocity prediction has been addressed in many publications. Several references considered deterministic and stochastic approaches such as Markov chain, autoregressive models, and artificial neural networks. There are numerous new sensor and signal technologies like vehicle-to-vehicle and vehicle-to-infrastructure communication that can be used to obtain inclusive datasets. Using these inclusive datasets of sensors in deep neural networks, high accuracy velocity predictions can be achieved. This research builds upon previous findings that Long Short-Term Memory (LSTM) deep neural networks provide the highest velocity prediction fidelity. We developed LSTM deep neural network which uses different groups of datasets collected in Fort Collins. Synchronous data was gathered using a test vehicle equipped with sensors to measure ego vehicle position and velocity, ADAS-derived near-neighbor relative position and velocity, and infrastructure-level transit time and signal phase and timing. Effect of different group of datasets on forward velocity prediction window of 10, 15, 20 and 30 seconds is studied. Developed algorithm is tested…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Model Predictive Control of an Air Path System for Multi-Mode Operation in a Diesel Engine

Garrett Advancing Motion-Paul Dickinson, Jaroslav Pekar, MinSeok Ko
Hyundai Motor Group-Buomsik Shin, Yohan Chi, Minsu Kim
  • Technical Paper
  • 2020-01-0269
To be published on 2020-04-14 by SAE International in United States
A supervisory model predictive control system is developed for the air system of diesel engine. The diesel air system is complicated, composing of many components and actuators, with significant nonlinear behavior. Furthermore, the engine usually often operates in various modes, for example to activate catalyst regeneration like LNT or DPF. Model predictive control (MPC) is based on a dynamical model of the controlled system and it features predicted actuator path optimization. MPC has been previously successfully applied to the diesel air path control problem, however, most of these applications were developed for a single operating mode (often called normal operating mode) which has only one set of high-level set point values. In reality, each engine operating mode requires a different set of set point maps in order to meet the various system requirements such as, HP-EGR modes for cold start purposes, heat-up modes for after-treatment conditioning, rich operation for catalyst purging and normal modes. Air mass and its composition requirement are heavily depending on each specific mode. This large array of mode specific set points…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Knock detection with series cylinder pressure sensors - Function principles – Realization in the engine control unit – vehicle measurement results from the chassis dyno -

Technical University of Munich-Matthias Gaderer
Vitesco Technologies GmbH-Harry Schuele, Johannes Beer
  • Technical Paper
  • 2020-01-1143
To be published on 2020-04-14 by SAE International in United States
Current legal requirements based on new driving cycles like WLTP or RDE focus on elevated power and torque from the engine. The gear ratios are chosen so as to permit low engine speeds to reduce fuel consumption and consequently CO2 emissions by shifting the operating point to higher loads with reduced throttling and friction losses at low engine speeds. To achieve the required acceleration values the engine tends to be operated more frequently close to its power and torque limits. Thus, the knock occurring at the load limits will increase in significance. Today, in series production, knock is detected via structure-borne sound sensors and eliminated via retarded ignition. New low-cost in cylinder-pressure sensors (ICPS) suitable for series-production now permit evaluation of every single combustion, thus detecting knock in the engine control unit at all speed and load ratios independent of parasitic noise. This paper presents the potential for knock detection and knock control using series-production capable cylinder-pressure sensors. First, the basic differences of the algorithm of a structure-borne sensor and a cylinder-pressure sensor and the…