Your Selections

Show Only


File Formats

Content Types











Mechanical Property Evaluation of Paper Honeycomb reinforced Plastics

Hyundai Motor India Engineering PVT LTD-Vignesh balaji S G, Pradeep S, Aakash S K
  • Technical Paper
  • 2019-28-2538
To be published on 2019-11-21 by SAE International in United States
Mechanical Property Evaluation of Paper Honeycomb Reinforced Plastics Vignesh Balaji S G, Pradeep Hyundai Motor India Engineering Pvt. Ltd, Chennai. India Key Words: Paper Honeycomb, Epoxy Composites, Mechanical Properties, Tensile, Impact & Flexural Test Research and/or Engineering Questions/Objective : Composite Materials are widely being used in many engineering applications because of their desirable properties & Cost, Weight Effectiveness. They are widely being used as their Strength-Weight Ratio is Higher than any Other Material. Paper Honeycomb Material is basically a paper made of honeycomb shapes enforced between layers of Glass Mat. This paper deals with the evaluation of Tensile Strength, Flexural (Three-Point Bending) Strength & Flexural Modulus, Impact Strength of Paper Honeycomb Reinforced Epoxy Composites. The Scope of this Material defines the quality of Paper Honeycomb Reinforced Composites which can be used for Automotive Trim Parts. Methodology: Before beginning the tests, the specimens should be prepared and the steps for the preparation of paper honeycomb reinforced epoxy composites are shown below: 1. Mould Preparation 2. Mixing of Epoxy and Hardener with a ratio of 10:1 3.…

Antirodent Corrugated tube Development for Fuel tube Rat bite

  • Technical Paper
  • 2019-28-2536
To be published on 2019-11-21 by SAE International in United States
Rat damages in automobiles/food crops/house hold things are extensive in India. Cases of Rat damages to Car Fuel tubes (plastic) and subsequent fuel leak problems are increasing in India.To protect the Fuel tube from rat bite , a more robust and easy assemble protection method is discussed. Hence Antirodent corrugated tubes are considered to protect fuel tube from rat bite. Antirodent masterbatch (3% ) were added to the corrugated tubes and lab test were done in CAZRI. Antirodent corrugated tubes tested with 2 different species showed better results compared to standard corrugated tubes

Characterization and Durability of Mold-In-Color Engineering Plastics

Mahindra & Mahindra, Ltd.-Sandeep Kumar Shukla
  • Technical Paper
  • 2019-28-2542
To be published on 2019-11-21 by SAE International in United States
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC/ABS used in automotive passenger vehicles. Comparative analysis was conducted before and after weathering exposure at defined intervals by using the various tools like Fourier Transform infra-red spectrometer (FTIR), thermogravimetric analyzer (TGA) and universal testing machine (UTM), Izod impact tester, dynamic mechanical analyzer (DMA) to understand the impact on their chemical and mechanical properties. This study will be useful in understanding material behavior, durability, performance and product quality.

Miniaturized and sleek protective device

Mahindra & Mahindra, Ltd.-Priyanka Marudhavanan
  • Technical Paper
  • 2019-28-2535
To be published on 2019-11-21 by SAE International in United States
A miniaturized and sleek protective device M. Priyanka, Mahindra&Mahindra, India D. Boobala Krishnan*, Mahindra&Mahindra, India T.Vijayan, Mahindra& Mahindra, India Keywords-Fuse, Lightweight. Research and/or Engineering Questions/Objective: Now-a-days there is lot of advancement coming in automobiles. Earlier the electronics were used in engine and engine compartment areas. Now all hydraulics and transmission have been operated by electronics. The role of electronics like sensors, actuators increasing day by day for lifting and moving operations. With increase in electronics circuit, there is complex in wiring harness and packaging space for fuse box is premium Limitations: Limitations of placing other devices. Occupy more space and weight in the vehicle. Packing constraint due to vibration and thermal management issues. Methodology: Two different fuse of same rating can be given in one fuse and we can reduce the wire size. By this method we can save many fuses and reduce the fuse box size. An optimized fuse box minimizes the length of circuit. It translates the system into less plastics. This type of system is highly useful in systems such as ECU…

Accounting the variabilities into squeak and rattle predictions

Altair Engineering India Pvt Ltd-Chandan Ravi, Rongali Praveen
Altair Engineering India Pvt , Ltd.-Hari Krishna Reddy
  • Technical Paper
  • 2019-28-2402
To be published on 2019-11-21 by SAE International in United States
Squeak and Rattle (S&R) are the dominant undesired noises which adjudge the perceived quality of a vehicle. It's a foremost problem which needs to be identified and eliminated at a design stage to develop a robust vehicle, which also aids in pacifying the physical testing and warranty claim costs. A Finite Element model of the complex plastic dashboard has been analyzed to identify risks and the root cause of S&R problem under dynamic and static loading conditions, using E-line methodology. These complex transient problems are highly influenced by various parameters like gap variability, temperature, the coefficient of thermal expansion, thickness, and material properties. This paper elaborates the detailed investigation conducted using stochastic simulations to evaluate the individual and combined impact of each parameter on S&R performance

Employing natural plant based fiber in interior automotive parts for cost & weight benefit

Vivekanandhan-Vivekanandhan Venkatesan Balaguru
  • Technical Paper
  • 2019-28-2559
To be published on 2019-11-21 by SAE International in United States
The Automotive industry is in ever more need for a lesser weight car due to progressively stringent emission norms and the demand of customer to have better mileage. It can be a gargantuan challenge for automotive manufacturers to search for lesser weight material to meet both customers as well as regulatory norms. But in some cases such lower weight material can increase the cost and adding a expensive material which increases overall cost to a price sensitive market like India is not favorable. One such solution is using the indigenous plant fiber (Jute) in combination with propylene (PP) to make Interior plastics components. Jute a vegetable fiber also referred to as "the golden fiber" has high tensile strength, low extensibility and is well established in fabric, packing, agriculture, construction industries. The biodegradable Jute lesser weight & abundance (India is the leading manufacturer of the Jute) can be utilized in making automobile trim parts in India. Through this paper we will have insight of the natural fiber based plastic components the benefits (lesser weight, Less GSM…

Impact of Waste Plastic Oil and its Blends on Performance combustion and emission Characteristics of CRDI Engine

MLR Institute Of Technology-Bridjesh Pappula
VIT-AP University-Arani Vijaya Rao Krishna Chaitanya
  • Technical Paper
  • 2019-28-0047
To be published on 2019-10-11 by SAE International in United States
Utilization of diesel is augmented consistently by transportation and industrial sectors which is making its existence obsolete in near future. Tremendous research has been done by many researchers to find an appropriate alternative for diesel fuel, in this scenario abundant acquisition of plastic wastes and their improper retreating techniques has grabbed the attention of researchers to convert them into alternative fuel for IC engines. This experimental investigation aims to study the performance, combustion and emission characteristics of common rail diesel injection (CRDI) fuelled with waste plastic oil and diesel blends at different injection strategies and at various loading conditions. From the results it is observed that slight decline in the thermal efficiency of the engine when operated with waste plastic oil (100%) due to high viscosity and lower heating value. There was a significant reduction in NOx emissions for low injection pressures of plastic diesel blend (P30). This study shows that waste plastic oil blend can be successfully used in the diesel engines without any major modifications.

Experimental study on tool wear and cutting temperature during machining of Nimonic C-263 and Waspaloy based on Taguchi Method and Response Surface Methodology

Sri Sairam Engineering College-Vetri Velmurugan Kannan
Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan
  • Technical Paper
  • 2019-28-0144
To be published on 2019-10-11 by SAE International in United States
Nickel based materials of Nimonic C-263 and Waspaloy are used nowadays for aerospace applications owing to its superior strength properties that are maintained at a higher temperature. Tool wear and cutting temperature in the vicinity of cutting edge are two essential machinability characteristics for any cutting tool. In this regard, this study is pursued to examine the influence of factors on measuring of tool wear (Vba) and cutting temperature (Ts) during dry machining of two alloys are studied experimentally based on Taguchi method and Response surface methodology. Taguchi’s L16 orthogonal array is used to design the experiment and a PVD (TiAlN), CVD (TiN/Al2O3/TiCN) coated carbide inserts are used on turning of two alloys. The factor effect on output responses is studied using analysis of variance, empirical models and responses surface 3D plots. To minimize the response and to convert into one single optimum level, responses surface desirability function approach is applied. The results show that growth of flank wears associated with Waspaloy is faster that of Nimonic C-263 due to rise in the heat for…

Design of energy absorbing plastic brackets to meet rear crash regulation ECE R42

Automotive & Industrial Sales-Pushparaj Arumugam
Automotive CAE-Devendra Sankla
  • Technical Paper
  • 2019-28-0041
To be published on 2019-10-11 by SAE International in United States
ECE R 42 uniform is a provision concerning the approval of vehicles with regard to their front and rear protective devices. Invention of low speed impact plastic brackets is related to rear bumper impact as per ECE R42 at a vehicle speed of 2.5 KMPH. Current bumper collision system uses several separate components assembled together. These components include a soft energy absorber which must go through iterative design and testing process which results in a comparatively high material cost. The invention involves the design of an energy dissipating method in slow speed rear impact with use of plastic brackets. The impact energy during the crash is controlled using innovative initial and secondary crash zones. The initial pendulum impact is on the bumper mounting sheet metal bracket which absorbs part of the energy. The proposed bracket design is capable to absorb the low speed impact energy during crash without the use of any additional parts. The bracket geometry is designed for maximum energy absorption during collapse. The design is also optimized to reduce the size of…

Experimental investigation on EGR technique and fuel antioxidant additive in CI engine fuelled with plastic oil blend for emission reduction

Hindustan Institute of Technology and Science-Sathish Kumar Rajamanickam
SRM Institute of Science and Technology-Balaji Gnanasikamani, Suresh Kumar Kasinathan, Cheralathan Marimuthu
  • Technical Paper
  • 2019-28-0079
To be published on 2019-10-11 by SAE International in United States
Experimental investigation on EGR technique and fuel antioxidant (p-Phenylenediamine) additive in plastic oil + diesel blend as test fuel in diesel engine is reported in this paper. The plastic oil is produced by waste plastics by the pyrolysis method. This plastic oil gives twin advantage of plastic waste management and also as alternate fuel for possible diesel fuel replacement. The plastic oil blend performance and emissions were nearer to neat diesel fuel. To reduce the NO emissions first EGR is fitted and tested. NO emission reduced by 18% compared to without EGR. Then antioxidant is added in (100 ppm level) with blended test fuel and found the NO emission reduction to be 15%. Performance, combustion and emission analysis were done in a single cylinder, four stroke, 5.2 kW diesel engine. Investigation results showed that the combined effect of EGR and antioxidant additive drastically reduces the NO emissions by 28%.