The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Particulate matter (PM)
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Influence of Fuel Composition and Renewable Fuel Components on the Emissions of a GDI Engine

Porsche AG-Hans-Peter Deeg, Dietmar Schwarzenthal
Technical Univ of Braunschweig-Michael Albrecht, Peter Eilts
  • Technical Paper
  • 2020-37-0025
To be published on 2020-06-23 by SAE International in United States
Investigations were performed, in which the emission behavior of renewable and conventional fuels of different composition and renewable fuel components was observed. The influence on the emissions of the start of injection at different load points was investigated. This shows how much wall and valve wetting affects the mixture formation of the different fuels. Further, the air fuel ratio in an operating point for catalyst heating, with medium engine temperatures, was varied. The latter shows the ability of evaporation of the fuels at engine warm-up conditions and sub-stochiometric λ-Values. The studied fuels were four fuel mixtures of significantly different composition of which three were compliant with the European fuel standard EN 228. A RON 98 in-field fuel, a Euro 6 reference fuel, an Anti-Spark-Fouling (ASF) fuel (designed for minimum soot production) and a potentially completely renewable and CO2-neural fuel, which is designed by Dr. Ing. h.c. F. Porsche AG, named POSYN (POrsche SYNthetic fuel) were chosen. Additionally, the fuel components Ethanol as classic biofuel, Isopropanol, Isobutanol and methyl tert-butyl ether (MTBE), which were chosen by…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessing the Engine-Out Pollutant Emissions of a S.I. Engine for Hybrid Powertrain Applications

Université de Bourgogne Franche-Comté-Jérémy Pelluet, Alan Keromnes, Luis Le Moyne
Université de Lyon - IFSTTAR AME ECO7-Alice Guille des buttes, Bruno Jeanneret
  • Technical Paper
  • 2020-37-0016
To be published on 2020-06-23 by SAE International in United States
Car manufacturers are introducing more and more hybrid powertrains in order to reach CO2 emissions targets and answer increasingly stringent pollutant emission regulations such as unburned hydrocarbons (HC), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter. The addition of an electric engine to a thermal engine introduces an additional degree of freedom in the energy management of the powertrain since two energy sources are available. Thus, the energy management system must also account for regulated pollutant emissions when devising an optimal energy management strategy to avoid a pollutant emission increase due to CO2 only driven optimisation. It is therefore necessary to model the influence of thermal engine operating conditions such as load and speed on these emissions to evaluate their concentration in the exhaust gases. This study presents an empiric modelling approach based on an extensive parametric study using a spark-ignition port-injection four-cylinder engine. Such a model intend to be used in the context of hybrid powertrain optimization. In order to reduce the computing costs required by ECU (Engine Control Unit), the number of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Influence of Port Water Injection on the Combustion Characteristics and Exhaust Emissions in a Spark-Ignition Direct-Injection Engine

Shanghai Jiao Tong University-Yadong Fan, Tianbao Wu, Xuesong Li, Min Xu, David Hung
  • Technical Paper
  • 2020-01-0294
To be published on 2020-04-14 by SAE International in United States
It is well known that engine downsizing is still the main energy-saving technology for spark-ignition direct-injection (SIDI) engine. However, with the continuous increase of the boosting ratio, the gasoline engine is often accompanied by the occurrence of knocking, which has the drawback to run the engine at retarded combustion phasing. Besides, in order to protect the turbine blades from being sintered by high exhaust temperature, the strategies of fuel enrichment are often taken to reduce the combustion temperature, which ultimately leads to a high level of particulate number emission. Therefore, to address the issues discussed above, the port water injection (PWI) techniques on a 1.2-L turbocharged, three-cylinder, SIDI engine were investigated.Measurements indicate that the optimization of spark timing has a significant impact on its performance. The two factors of the water substance itself and spark advance caused by the knock mitigation are trade-offs, which eventually affect the combustion performance. Under knock limited spark advance (KLSA) condition, we find that the application of port water injection could effectively advance the combustion phasing and reduce exhaust gas…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Acoustic characteristics prediction and optimization of wheel resonators with arbitrary section

SAIC Motor Corporation Limited-Yimin Sun, Junlei Mao
Tongji University-Rong Guo, Tiantian Mi
  • Technical Paper
  • 2020-01-0917
To be published on 2020-04-14 by SAE International in United States
Tire cavity noise of pure electric vehicles is particularly prominent due to the absence of engine noise, which are usually eliminated by adding Helmholtz resonators with arbitrary transversal section to the wheel rims. This paper provides theoretical basis for accurately predicting and effectively improving acoustic performance of wheel resonators. A hybrid finite element method is developed to extract the transversal wavenumbers and eigenvectors, and the mode-matching scheme is employed to determine the transmission loss of the Helmholtz resonator. Based on the accuracy validation of this method, the matching design of the wheel resonators and the optimization method of tire cavity noise are studied. The identification method of the tire cavity resonance frequency is developed through the acoustic modal simulation and test. A scientific transmission loss target curve and fitness function are defined according to the noise characteristics. Combing the transmission loss prediction theory and particle swarm algorithm, the structure parameters of the wheel resonator are optimized. A remarkable attenuation of tire cavity resonance can be observed through test results.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A new efficient combustion method for ICEs

Revolutionary Engines LLC-Peter C. Cheeseman
  • Technical Paper
  • 2020-01-1314
To be published on 2020-04-14 by SAE International in United States
Current methods for combustion in Internal Combustion Engines (ICEs) are: Spark Ignition (SI), Compression Ignition (CI) and Homogeneous Charge Compression Ignition (HCCI). Each of these combustion methods has well known limitations for efficiency and clean exhaust. This paper presents a new method of combustion, called Entry Ignition (EI), that overcomes these limitations. EI burns a homogeneous fuel air mixture at constant pressure with combustion occurring at the inlet where the unburned mixture flows into the combustion chamber. Combustion results from the unburned mixture mixing with the much hotter already burned gases already in the combustion chamber. EI can operate in a conventional piston-type engine, with the only major change being in the valving. EI’s efficiency gain results from the following. Firstly, EI is not subject to “knocking” and so can operate at CI level compression ratios or higher. Secondly, EI allows lean burn, which improves efficiency for basic thermodynamic reasons. Thirdly, an engine that using EI can fully expand the combustion gases (Brayton cycle), and finally, EI has reduced heat loss relative to the other…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Study on the Effect of Debris Location on a Double Element Wing in Ground Effect

Loughborough University-Tom Marsh, Graham Hodgson, Andrew Garmory, Dipesh Patel
  • Technical Paper
  • 2020-01-0693
To be published on 2020-04-14 by SAE International in United States
Multi-element front wings are essential in numerous motorsport series, such as Formula 1, for the generation of downforce and control of the onset flows to other surfaces and cooling systems. Rubber tyre debris from the soft compounds used in such series can become attached to the wing, reducing downforce, increasing drag and altering the wake characteristics of the wing. This work studies, through force balance and Particle Image Velocimetry measurements, the effect a piece of debris has on an inverted double element wing in ground effect. The wing was mounted at a ride height determined to minimise separation from a fixed false-floor in the Loughborough University Large Wind Tunnel. The debris is modelled using a hard-setting putty and is located at different span and chord-wise positions around the wing. The sensitivity to location is studied and the effect on the wake analysed using PIV measurements. The largest effect on downforce was observed when the debris was located on the underside of the wing towards the endplates. The wake was most effected when the debris was…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of different types of glazing on Air- Conditioning system performance of vehicle

Maruti Suzuki India, Ltd.-Akshay Bhateja
  • Technical Paper
  • 2020-01-1249
To be published on 2020-04-14 by SAE International in United States
Due to intense peak summer temperatures and sunny summers in tropical countries like India, achieving the required cabin temperature in vehicle without compromising on fuel efficiency is becoming increasingly challenging. The major source of heat load on vehicle is solar load. Therefore, a study has been conducted to evaluate the heat load on vehicle cabin due to solar radiations and its impact on vehicle Air-Conditioning system performance with various combinations of door glasses and windscreen. The glasses used for this study are classified as Green, Dark Green, Dark Gray, Standard PVB (Polyvinyl Butyral) Windscreen and PVB Windscreen having Infrared Cut particles. For each glass, part level evaluation was done to find out the percentage transmittance of light of different wavelengths and percentage transmittance of heat flux through each glass. To verify the effectiveness of each glass, vehicle level Air-Conditioning system performance test was done in All Weather Chassis Dyno Facility for each retrofitted vehicle. Retrofitted vehicle configurations were decided as per regional visible light transmittance regulations. To eliminate the effect of manufacturing variance while evaluating…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Instantaneous PLII and OH* Chemiluminescence Study on Wide Distillation Fuels, PODEn and Ethanol Blends in a Constant Volume Vessel

Birmingham University-Hongming Xu
CNPC Ji Chai Power Co., Ltd.-Dong Liu
  • Technical Paper
  • 2020-01-0340
To be published on 2020-04-14 by SAE International in United States
The combustion characteristics and soot emissions of three types of fuels were studied in a high pressure and temperature vessel. In order to achieve better volatility, proper cetane number and high oxygen content, the newly designed WDEP fuel was proposed and investigated. It is composed of wide distillation fuel (WD), PODE3-6 mixture (PODEn) and ethanol. For comparison, the test on WD and the mixture of PODEn-ethanol (EP) are also conducted. OH* chemiluminescence during the combustion was measured and instantaneous PLII was also applied to reveal the soot distribution. Abel transformation was adopted to calculate the total soot of axisymmetric flame. The results show that WDEP has similar ignition delays and flame lift-off lengths to those of WD at 870-920 K. But the initial ignition locations of WDEP flame in different cycles were more concentrated, particularly under the condition of low oxygen atmosphere. Comparing with WD, the soot amount of WDEP decreased for 55% and 27% at 870 K and 920 K. For the case of 920 K and 15.8% of ambient oxygen, the soot amount…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Gasoline Particulate Filter Applications for Plug-In Hybrid and Traditional Cars

BYD Auto Industry Co., Ltd.-Qinglian Zhang, Yinsheng Liao, Hongzhou Zhang
Corning Co., Ltd.-Lei Zhang, Suhao He
  • Technical Paper
  • 2020-01-1430
To be published on 2020-04-14 by SAE International in United States
Plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) are considered as primary paths in China to meet corporate average fuel consumption (CAFC) credit and new energy vehicle (NEV) credit regulations. Many local original equipment manufacturers (OEMs) develop PHEVs based on their internal combustion engine (ICE) base models without significant modification on engine side. Traditional ICE vehicles are solely driven by engines, while PHEVs can be driven by engine or electric motors, independently or together, depending on powertrain architecture and operating strategy. PHEVs may have more particle number or particulate matter (PN/PM) emissions. To meet CN6 regulation, gasoline particulate filters (GPFs) are widely used for both PHEV and traditional cars. It is important to investigate the impacts of hybrid powertrain on gasoline particulate filter applications.This paper compares GPF application development for a traditional BYD Tang (ICE base model) and a BYD Tang DM (PHEV model). Same aftertreatment design with slightly different layout is used to cover both models to meet PM/PN/gaseous emission standards. GPF soot loading and burning behavior are compared. In general, the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation Analysis of Early and Late Miller Cycle Strategies Influence on Diesel Engine Combustion and Emissions

Jining Polytechnic-Xiuyuan Li
Tongji University-Shuai Yang, Xiaolin Yang, Haifeng Liu, Zhiwei Feng
  • Technical Paper
  • 2020-01-0662
To be published on 2020-04-14 by SAE International in United States
Based on the working model of a diesel engine, the influence of 2 Miller cycle strategies-Early Intake Valve Closure (EIVC) and Late Intake Valve Closure (LIVC) on the combustion and emissions of diesel engine was analyzed, then the working condition of each Miller cycle strategies on the engine under the rated speed was optimized through the adjust of the valve timing, boost pressure and the injection timing. The research found that both delaying and advancing the closure timing of the intake valve can decrease the pressure and temperature during compression stroke, prolonging the ignition delay. However, due to the decrease of the working media inside the cylinder, the average in-cylinder temperature and soot emissions will increase, which can be alleviated by raising the boost pressure and the resulting compensation of the intake loss. The study found that together with increasing boost pressure and delaying injection timing, both EIVC and LIVC can reduce the NOx and soot emissions simultaneously. The simulation results show that while keeping the peak firing pressure the same as the original machine,…