Your Selections

Particulate matter (PM)
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Technical Review on Performance and Emissions of Compressed Natural Gas - Diesel Dual Fuel Engine

Indian Oil Corp., Ltd.-M. Muralidharan, M Subramanian
University of Petroleum and Energy Studies-Ajay Srivastava
  • Technical Paper
  • 2019-28-2390
Published 2019-11-21 by SAE International in United States
In view of the depletion of energy and environmental pollution, dual fuel technology has caught the attention of researchers as a viable technology keeping in mind the increased availability of fuels like Compressed Natural Gas (CNG). It is an ecologically friendly technology due to lower particulate matter (PM) and smoke emissions and retains the efficiency of diesel combustion. Generally, dual fuel technology has been prevalent for large engines like marine, locomotive and stationary engines. However, its use for automotive engines has been limited in the past due to constraints of the limited supply of alternative fuels. CNG is a practical fuel under dual-fuel mode operation, with varying degree of success. The induction method prevents a premixed natural gas-air mixture, minimizes the volumetric efficiency and results in a loss of power at higher speeds. Under lower engine operating temperatures, at low-intermediate loads, the oxides of nitrogen (NOx) emissions reduce however hydrocarbon (HC) and carbon monoxide (CO) emissions are significantly increased. This paper reviews the fuel properties of CNG comparison with diesel, methods available to use CNG…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Development of Dedicated Lubricant for Hydrogen Fuelled Spark Ignition Engine

Indian Institute of Technology - Delhi-K A Subramanian
Indian Oil Corporation Limited-Sauhard Singh, Verinder Kumar Bathla, Reji Mathai
  • Technical Paper
  • 2019-28-2511
Published 2019-11-21 by SAE International in United States
Hydrocarbon based fossil fuels are being used as the main energy resource, burning of which produces carbon dioxide (CO2) and other emissions harmful to environment. Moreover, CO2 is considered as the main contributor to global warming or greenhouse effect. These are the main drivers behind the ongoing research & development in the area of alternative energy sources. Among various alternatives, Hydrogen is identified as the most promising alternative fuel. Hydrogen is the cleanest fuel having some of the most attractive features such as various methods of production from renewable energy (solar, wind, biomass etc.), from fossil fuels etc. H2 as a fuel can be used in various applications such as spark ignition engine, fuel cells etc.Hydrogen has low ignition energy and ensures easy ignition of the ultra-lean mixture with air. The flame speed of hydrogen is about five times higher than methane and gasoline which allows hydrogen fuelled IC engines to have relatively reduced cyclic variations than that of with methane and gasoline. High flame speed also helps to make the combustion closer to constant…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Development of Diesel Particulate NOx Reduction DPNR System for Simultaneous Reduction of PM and NOx in Diesel Engines

ARAI Academy-E. Parthiban, Aatmesh Jain, Kamalkishore Chhaganlal Vora
  • Technical Paper
  • 2019-28-2554
Published 2019-11-21 by SAE International in United States
The Diesel Particulate NOx Reduction (DPNR) system is used for simultaneous reduction of PM and NOx in diesel engine. DPF is used to trap particulate matter in diesel engines. NOx absorber technology removes NOx in a lean (i.e. oxygen rich) exhaust environment for both diesel and gasoline lean-burn GDI engines. The NOx storage and reduction catalyst is uniformly coated on the wall surface and in the fine pores of a highly porous filter substrate. Combination of these two components in the DPNR results in a compact size of the system. The base diesel engine model validated with pressure crank angle diagram and performance parameters such as Indicated mean effective pressure. This base engine’s exhaust emission is given as an input to the DPNR system. The surface reaction is connected to the DPF through chemcon template. The surface reaction is NOx storage and reduction chemical kinetics like Lean NOx Trap. The modelling of DPNR and Base engine is done using GT-SUITE. This paper describes about the 1D simulation of DPNR system with base diesel engine model…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Combustion Optimization and In-Cylinder NOx and PM Reduction by Using EGR and Split Injection Techniques

ARAI Academy-Madhan Kumar, Aatmesh Jain, Kamalkishore Chhaganlal Vora
  • Technical Paper
  • 2019-28-2560
Published 2019-11-21 by SAE International in United States
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT- POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter. The predictive combustion model (DI-PULSE) has been developed for the calibration of an engine under multiple injections and the detailed injection rates with EGR rates. Split injection with higher fuel quantity injected in the 1st pulse, helped to significantly reduce PM emissions. This reduction is due to the restraint in the premixed phase…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Emission Reduction of a Diesel Engine Fueled with Blends of Biofuel under the Influence of 1,4-Dioxane and Rice Husk Nano Particle

Delphi TVS-Santiago Josan
Madras Institute of Technology-Mebin Samuel P, Devaradjane G
  • Technical Paper
  • 2019-28-2387
Published 2019-11-21 by SAE International in United States
In this modern era increase in pollution became a huge impact on the lives of all living creatures, in this automobile tends to be one of the major contributors in terms of air pollution thanks to their exhaust emissions. The objective of the present study is to reduce the amount of harmful pollutants emitted from the automobiles by the utilization of a biofuel further influenced by two additives (liquid and a Nano additive). In this study, first the bio oil is extracted, then the biofuel is mixed with diesel fuel at different proportions of 20%, 40% by volume. Experiments are carried out in a common rail direct injection, diesel engine, which is a stationary test engine manufactured by Kirloskar, connected to a computer setup with an open control unit. The emission values in the exhaust gases are obtained using AVL exhaust gas analyzer. Then 0.1% of rice husk Nano additive addition with the fuel blend followed by 3%, 6% of 1, 4-Dioxane blended with the previous blend and its performance (BTE, BSFC) and emission (HC,…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Fabrication and Wear Characteristics Basalt Fiber Reinforced Polypropylene Matrix Composites

Dhanalakshmi Srinivasan Institute of Technology-Krishnaraj M, Thirugnana Sambandha T, Arun R
Trichy Engineering College-Vaitheeswaran T
  • Technical Paper
  • 2019-28-2570
Published 2019-11-21 by SAE International in United States
Generally brake pads are manufacturing by use of asbestos materials, that materials are chemically harmful and toxic nature to affect the human health. The present investigation is to fabricates polypropylene composites with mixing constant volume [5 vol.%] of alumina nano particles and different volume percentages [0%, 5%, 10% & 15%] of basalt Fiber by hand layup compression technique. The wear characteristics of polypropylene matrix composites were tested by dry sliding condition. The test was carried out pin on disc apparatus, configured with hardened steel counter-face at elevated temperature. The load was applied 10 N to 30 N with the interval of 10 N and varying of sliding speed 300 rpm to 900 rpm with the interval of 300 rpm for the time period of 0-180 sec. The wear rate was decreases with addition of alumina nano particle and the frictional force was increases due to basalt Fiber content present in the composites. The co-efficient of friction was increases 0.1 to 0.66 under normal loading condition.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A New Appraisal of the Thermomechanical Behaviour of a Hybrid Composite Brake Disc in a Formula Vehicle

Force Motors-Pradeep Chandrasakaran
Sri Krishna College of Engineering and Technology-Soundararajan Ranganathan, Sathishkumar Kuppuraj, Shanthosh Gopal
  • Technical Paper
  • 2019-28-2572
Published 2019-11-21 by SAE International in United States
The present work promotes a hybrid composite brake disc for thermal and structural analysis of a formula vehicle. In order to reduce the un-sprung weight without compromising the strength, hybrid composite materials were incorporated in the disc plates of the braking system. In the disk brake system, the disc is a major part of a device used for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking condition. Based on the practical understanding the brake disc was remodeled with unique slotting patterns and grooves, using the selected aluminium alloy of (AA8081) with reinforcement particle of 15wt% Silicon carbide (SiC) and 3wt% Graphite (Gr) as a hybrid composite material for this proposed work. By varying slotting pattern and groove angles the transient thermal and structural analysis using ANSYS workbench on the hybrid composite disc plate of disk brake is done. The main purpose of this study is to analyse the thermomechanical behavior of composite brake disc for a formula vehicle under severe braking conditions. To…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A review on influence of different flushing methods on Material Removal Rate using EDM.

Manav Rachna International University-Gurpreet Singh Matharou
  • Technical Paper
  • 2019-28-2543
Published 2019-11-21 by SAE International in United States
Electrical release machining (EDM), is a material removal procedure whereby a coveted shape is acquired by utilizing electrical releases (sparks). Material is expelled from the work piece by a progression of quickly repeating current releases between cathode and anode, isolated by a dielectric fluid and subject to an electric voltage. At the point when the voltage between the two terminals is expanded, the power of the electric field in the volume between the anodes winds up more prominent than the quality of the dielectric (in any event in a few spots), which separates, enabling current to stream between the two cathodes. This wonder is the equivalent as the breakdown of a capacitor (condenser). Accordingly, material is expelled from the cathodes. Once the present stops (or is quit, contingent upon the sort of generator), new fluid dielectric is generally passed on into the between cathode volume, empowering the strong particles (flotsam and jetsam) to be diverted and the protecting properties of the dielectric to be reestablished. Including new fluid dielectric in the between anode volume is…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Petroleum Base Instrument Bearing Lubricant Viscosity 15

AMS B Finishes Processes and Fluids Committee
  • Aerospace Material Specification
  • AMS3055B
  • Current
Published 2019-11-04 by SAE International in United States
This specification covers the requirements for a refined paraffinic petroleum-base lubricant.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Coating, Titanium Nitride Physical Vapor Deposition

AMS B Finishes Processes and Fluids Committee
  • Aerospace Material Specification
  • AMS2444A
  • Current
Published 2019-11-04 by SAE International in United States
This specification covers the requirements for the application and properties of a titanium nitride coating on metal parts applied by physical vapor deposition (PVD).
This content contains downloadable datasets
Annotation ability available