Your Selections

Optimization
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Technology Domains in Aerospace Additive Manufacturing Concerning Safety, Airworthiness, and Certification

Muelaner Engineering, Ltd.-Jody Muelaner
  • Research Report
  • EPR2019008
To be published on 2019-12-20 by SAE International in United States
Additive manufacturing (AM) is currently being used to produce many certified aerospace components. However, significant advantages of AM are not exploited due to unresolved issues associated with process control, feedstock materials, surface finish, inspection, and cost. Components subject to fatigue must undergo surface finish improvements to enable inspection. This adds cost and limits the use of topology optimization. Continued development of process models is also required to enable optimization and understand the potential for defects in thin walled and slender sections. Costs are high for powder-fed processes due to material costs, machine costs, and low deposition rates. Cost for wire-fed processes are high due to the extensive post-process machining required. In addition, these processes are limited to low-complexity features. Incremental improvements in all of these areas are being made but a step change could potentially be achieved by hybrid processes, which use wire feedstock to deposit the bulk of the part and powder for fine detail. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Machine Learning based Multi-objective Multidisciplinary Design Optimization (MMDO) for Lightweighting the Automotive Structures

Mahindra and Mahindra, Ltd.-Ranga Srinivas Gunti
  • Technical Paper
  • 2019-28-2424
To be published on 2019-11-21 by SAE International in United States
The present work involves Machine Learning (ML) based Multi-objective Multidisciplinary Design Optimization (MMDO) for lightweighting the automotive structures. The challenge in deployment of MMDO algorithms in solving real-world automotive structural design problems is the enormous time involved in solving full vehicle finite element models that involve large number of design variables and multiple performance constraints pertaining to vehicle dynamics, durability, crash and NVH domains. With the availability of powerful workstations and using the advanced Computer Aided Engineering (CAE) tools, it has become possible to generate huge sets of simulation data pertaining to multiple domains. In the present work, lightweigting of the vehicle structure is achieved, considered the vehicular hardpoint locations and the gages of the vehicle structures as the design variables and performance parameters pertaining to vehicle dynamics, structural durability, front-end intrusions during an IIHS offset impact test and the modal frequencies of few critical structural members as the constraint variables. Artificial Neural Networks (ANN) based algorithms were used for developing the predictive models of various performance parameters. The predictive models were then used to…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

NEXT GENERATION POWER DISTRIBUTION UNIT IN WIRING HARNESS

Mahindra & Mahindra, Ltd.-Boobala Krishnan D, Himanshi Dua, T Vijayan, Apurbo Kirty
  • Technical Paper
  • 2019-28-2571
To be published on 2019-11-21 by SAE International in United States
Keywords – Miniaturization, Low Profile (LP) Relays, Low Profile (LP) Fuses, Fuse box, Wiring Harness Research and/or Engineering Questions/Objective With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. Methodology Miniaturization involves replacing the mini fuses and J-case fuses with LP mini and LP J-case fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost. Furthermore, to address stringent weight and space targets, LP mini fuses and LP J-case fuses were further replaced with micro-2 fuse and M-case fuse respectively. Similarly, micro relay and mini relay were replaced with Ultra micro and High current micro relay respectively. Results We took MPV segment vehicle for our initial testing and validation…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimization of vehicle side panel to improve crashworthiness.

Kichumon Haldus
  • Technical Paper
  • 2019-28-2573
To be published on 2019-11-21 by SAE International in United States
The front of a car, though susceptible to the biggest impacts in terms of magnitude, has space and additional reinforcement to incorporate various safety measures. The rear has considerable amount of space to contain a proper crash box. The side of the car, though, doesn’t have this flexibility in design, the main limiting parameter being space. Any intrusion into the passenger cabin can result in serious injury or even death. The objective of this work is to improve the crashworthiness of a vehicle’s side so as to reduce intrusion into the passenger cabin. The work is focused on optimizing the door and B pillar. The optimized side panel is compared with the baseline model as per standard. ANSYS solver is used for the simulation. The optimized design applied to the door and B pillar will significantly improve crashworthiness of the vehicle side panel as a whole.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design optimization for Engine mount

Prateek Sharma
VE Commercial Vehicles, Ltd.-Mahendra Parwal
  • Technical Paper
  • 2019-28-2540
To be published on 2019-11-21 by SAE International in United States
The mounting of an engine plays important role in controlling the vibration transmissibility, alignment of transmission unit within specific limit. Design of any mounting system mainly depends on stiffness, allowed deformation and transmissibility of force, natural frequency and size w.r.t space constraints etc. This paper helps to study the behavior of engine mount with different layer of rubber with defer stiffness. Firstly the design of front engine mount with single rubber layer according to space constraint in vehicle and then analysis is done to determine the deformation and various results using CAE technique. As per the results, design is modified with varying layer of rubber pad and again analysis is done with same boundary condition followed by improved results.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design improvements in advanced automotive batteries using AI

International Centre For Automotive Tech.-Devesh Pareek Sachin
  • Technical Paper
  • 2019-28-2505
To be published on 2019-11-21 by SAE International in United States
Introduction: The advent of electric mobility is changing the conventional mobility techniques and with this comes challenges to improve the performance of battery to optimize power consumption in electric vehicles. Objective: This paper would focus on the optimization of battery performance incoherent with vehicle power consumption behavior in terms of efficiency using decision-making ability based on given input signals
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

LIGHT WEIGHTING OF ADDITIVE MANUFACTURED PARTS FOR AUTOMOTIVE PRODUCTION APPLICATIONS THROUGH TOPOLOGY OPTIMIZATION TECHNIQUES

General Motors Technical Center India-Abhijith Naik, T Sujan, Suraj Desai, Saravanakumar Shanmugam
  • Technical Paper
  • 2019-28-2544
To be published on 2019-11-21 by SAE International in United States
Rapidly enhancing engineering techniques to manufacture components in quick turnaround time have gained importance in recent time. Manufacturing strategies like Additive Manufacturing (AM) are a key enabler for achieving them. Unlike traditional manufacturing techniques such as injection molding, casting etc., AM unites advanced materials, machines, and software which will be critical for Industry 4.0. Successful application of AM involves a specific combination and understanding of these three key elements. In this paper the AM approach used is Fused Deposition Modelling (FDM). Since material costs contribute to 60% of the overall FDM costs, it becomes a necessity to optimize the material consumption of the produced parts. This paper reports case studies of 3D printed parts used in an Automobile plant’s production aids, which utilize computational methods(CAE), topology optimization and FDM constrains (build directions) to manufacture the part in the most optimal way. These methodologies were used to validate the current operating conditions, optimize the design, increase the stiffness of the original part and reduce the material costs. The newly optimized designs were verified by successfully passing…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

SmartPlay Studio-A Connected Infotainment Development

Maruti Suzuki India, Ltd.-Pankaj Kumar Bharti, Shashi Kant Roy, Surendra Raghuwanshi, Satish Pandey, Ritesh Khandelwal, Tarun Aggarwal, Satish Kumar Pandey
  • Technical Paper
  • 2019-28-2440
To be published on 2019-11-21 by SAE International in United States
Infotainment has been always an important aspect of life which has made its way to car design. The cars today are much more advanced compared to their predecessors. The in-vehicle infotainment advancements have followed the consumer electronics market in terms of technologies such as Touchscreen, App based Navigation, Voice Assistant and other multimedia services. This trend is going to expand further as smartphones have revolutionized the infotainment domain with awareness and accessibility to customers. The infotainment system in the cars are expected to be connected not only to the cloud but various vehicle controllers to display host of information & controls at customer`s fingertips. To design a system that supports connectivity to both cloud and vehicle is challenging in terms of cost and design for the OEMs. With focus on Indian market condition and global trends, this paper analyzes the customer expectation for Connected Infotainment system. It also explains the methodology adopted by Maruti Suzuki India Limited to: (i) Provide a seamless Connected Infotainment system (Smartplay Studio) for its model line-up (ii) Leveraging Smartphone Linkage…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES

General Motors Technical Center-Santosh Swamy, Shivakumar Chidanandappa
University of Agder, Norway-Gulshan Noorsumar
  • Technical Paper
  • 2019-28-2546
To be published on 2019-11-21 by SAE International in United States
MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES Santosh Swamy, Gulshan Noorsumar, Shivakumar Chidanandappa General Motors Technical Center, India Keywords Hood; Head Injury Criterion (HIC); Stiffness; Shape optimization; Multi-Disciplinary Optimization (MDO) Research and/or Engineering Questions/ Objective The objective of this work is to obtain a light weight hood which has least possible mass, and at the same time meets all contradicting performances of pedpro (pedestrian protection) and structural stiffness disciplines. Passenger vehicles have stringent safety norms from pedpro perspective to meet child and adult head injury criteria (HIC). These pedestrian safety requirements often conflict with structural stiffness performance criteria which pose a challenge for most automotive OEMs. Therefore, there is a growing need for mass optimization and performance balancing to meet both the requirements simultaneously. Methodology The outlined method uses a CAE based Multi-Disciplinary Optimization (MDO) approach involving shape variables to find an optimum design for stiffness and pedpro performances. Adding slots along the vertical beam walls of the hood inner panel helps soften the area around the head impact location, thereby improving pedpro performance locally.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical Simulation of Battery Cooling Systems in Electric Vehicles

Pranav Vikas, Ltd.-Bharat Kumar Nuthi, Vijayaraghavan S, D. Govindaraj
  • Technical Paper
  • 2019-28-2481
To be published on 2019-11-21 by SAE International in United States
As electric vehicles are working on stored energy in batteries or cells. These units needs to be regulated by cool down or heat up to perform utmost and to ensure individual cell life. Battery cooling systems are installed on vehicles to regulate the temperature around these packs. To ensure maximum performance of these units, numerical simulation is performed. Optimization (includes study of cover design, number of openings, area & position of openings around the cover in which unit is mounted) of flow rate as well as flow path into battery cooling systems is carried out. This study is carried to design a stable unit.