Your Selections

Mobility
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Issues in Balancing Virtual, Closed-Course, and Public-Road Testing of Automated Driving Systems

Silicon Valley Mobility-Sven Beiker
  • Research Report
  • EPR2019011
To be published on 2019-12-20 by SAE International in United States
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the challenges of determining the optimal balance for testing automated driving systems (ADS). Three main issues are outlined that merit immediate interest: First, determining what kind of testing an ADS needs before it is ready to go on the road; Second, the current, optimal, and realistic balance of simulation testing and real-world testing; Third, the challenges of sharing data in the industry. SAE EDGE™ Research Reports are preliminary investigations of new technologies. The three technical issues identified in this report need to be discussed in greater depth with the aims of, first, clarifying the scope of the industry-wide alignment needed, second, prioritizing the issues requiring resolution, and, third, creating a plan to generate the necessary frameworks, practices, and protocols. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Unsettled Issues in Determining Appropriate Modeling Fidelity for Automated Driving Systems Simulation

Silicon Valley Mobility-Sven Beiker
  • Research Report
  • EPR2019007
Published 2019-12-06 by SAE International in United States
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the challenges of achieving optimal model fidelity for developing, validating, and verifying vehicles capable of automated driving. Three main issues are outlined that merit immediate interest:First, assuring that simulation models represent their real-world counterparts, how to quantify simulation model fidelity, and how to assess system risk.Second, developing a universal simulation model interface and language for verifying, simulating, and calibrating automated driving sensors.Third, characterizing and determining the different requirements for sensor, vehicle, environment, and human driver models.SAE EDGE™ Research Reports are preliminary investigations of new technologies. The three technical issues identified in this report need to be discussed in greater depth with the aims of, first, clarifying the scope of the industry-wide alignment needed; second, prioritizing the issues requiring resolution; and, third, creating a plan to generate the necessary frameworks, practices, and protocols.NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Performance of Switched Reluctance Motor for Small Electric Vehicle in Urban Mobility

ARAI Academy-Vignesh S, Yogesh Krishan Bhateshavar, Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2501
Published 2019-11-21 by SAE International in United States
Small electric vehicles are challenging in nature while designing the power train and especially the mounting of batteries within the volume available. In this research, power train of small electric vehicle is designed and it is compared with the electric vehicles. The designed vehicle should meet the requirements of urban car so that it can be preferred in urban mobility. Emphasis is given on studying performance parameters such as motor speed, torque for different urban driving cycles by altering the motor and its no. of poles. Battery pack is designed to fit under the front hood of the vehicle whereas motor is fitted at the rear. Range is estimated using Simulink and it is validated with mathematical calculation using Peukert method performed in MATLAB. It is concluded that the designed vehicle with Switched Reluctance Motor 6/4 configuration of 15 kW, 110 Nm is sufficient to meet the urban car in 2020 targets. NCA battery is preferred for range improvement. Retro fitment is given higher priority while designing battery pack.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design improvements in advanced automotive batteries using AI

International Centre For Automotive Tech.-Devesh Pareek Sachin
  • Technical Paper
  • 2019-28-2505
Published 2019-11-21 by SAE International in United States
Introduction: The advent of electric mobility is changing the conventional mobility techniques and with this comes challenges to improve the performance of battery to optimize power consumption in electric vehicles. Objective: This paper would focus on the optimization of battery performance incoherent with vehicle power consumption behavior in terms of efficiency using decision-making ability based on given input signals
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Performance & Efficiency Improvement of Electric Vehicle Power Train

International Centre for Automotive Technology-Devesh Pareek
  • Technical Paper
  • 2019-28-2483
Published 2019-11-21 by SAE International in United States
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b. Optimization of Design Specs and duty cycle based on real world driving cycles. c. Innovative Heat dissipation techniques to minimize energy loss to heat. d. Efficient Electrical to Chemical Energy conversion and vice versa through use of optimization techniques based on…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Self-Expressive & Self-Healing Closures Hardwares for Autonomous & Shared Mobility

General Motors Technical Center India-Vijayasarathy Subramanian, Biju Kumar, Masani Sivakrishna, Anandakumar Marappan
  • Technical Paper
  • 2019-28-2525
Published 2019-11-21 by SAE International in United States
Shared Mobility is changing mobility trends of Automotive Industry and its one of the Disruptions. The current vehicle customer usage and life of components are designed majorly for personal vehicle and with factors that comprehend usage of shared vehicles. The usage pattern for customer differ between personal vehicle, shared vehicle & Taxi. In the era of Autonomous and Shared mobility systems, the customer usage and expectation of vehicle condition on each & every ride of vehicle will be a vehicle in good condition on each ride. The vehicle needs systems that will guide or fix the issues on its own, to improve customer satisfaction. We also need a transformation in customer behavior pattern to use shared mobility vehicle as their personal vehicle to improve the life of vehicle hardwares & reduce warranty cost. We will be focusing on Vehicle Closure hardware & mechanisms as that will be the first and major interaction point for customers in vehicle. This gives us an opportunity to improve product life and customer experience in ride share and shared mobility…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Improved Performance of Electric Vehicles with Supercapacitor

Spel Technologies Private Limited-Rajendrakumar Laxminarayan Sharma
  • Technical Paper
  • 2019-28-2468
Published 2019-11-21 by SAE International in United States
Background: Due to Environmental concern worldwide, Mobility is under pressure to shift gear from fossil fuel to Electric. This is Rebirth of Electric Mobility is with state’s initiative, but it is facing bigger challenges than the 1900s era. Fossil fuel vehicles have already carved the benchmark on ease of range per charge, and time of charge (filling of fossil fuel), which needs to be at least matched by Electric Vehicles. The success of electric vehicles will not only be driven by state policy but also by performance and Economic Viability. While at this introduction level state is trying best to offset cost by way of subsidy/tax-sops offering. So, in clear terms “Performance of Electric Vehicles” need to be addressed and enhanced to put them in main stream in place of fossil fuel vehicles. In last 100 years there has been significant technological development in Motors, and Energy Storage, which is base of Electric mobility. Motors have fared well on technological development front, but energy storage has been struggling to keep pace with this Power hungry…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Rapid Prototyping and Implementation of traction motor drive for E- Mobility

Altair Engineering India Pvt Ltd.-Srikanth R, Sreeram Mohan
  • Technical Paper
  • 2019-28-2472
Published 2019-11-21 by SAE International in United States
Objective / Question: Is it possible to extend the envelope of simulation driven design and its advantages to development of complex dynamic systems viz. traction motor drives? The objective that then follows is how to enable OEM/Tier-1s to reduce wastes in the process of traction motor controller design, development, optimization and implementation. Motor control design to validation process is time consuming and tricky! Additionally, the requirement of software knowledge to write code to implement drive engineer's control ideas. The challenges here are - to name a few - algorithm for real time, addressing memory constraints, debugging, comprehending mathematical overflows, portability & BOM cost. These introduces wastes in parameters like time, cost, performance, efficiency and reliability. Methodology: Developing a new traction motor controller for E Mobility takes 18 - 24 months typically. 2 distinct activities take place in a loop. One is the motor drive engineer who has good understanding of the motor, requirement demands on the motor & digital control of the motor and the second is the software engineer who has a good understanding…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

An analysis of the Fuel Cell Pack with Different Drive Cycles

VE Commercial Vehicles, Ltd.-C Venkatesh Chandrasekar, L R Amruth Kumar
  • Technical Paper
  • 2019-28-2510
Published 2019-11-21 by SAE International in United States
In the view of an eco-friendly environmental future, the major automotive manufacturers are making a move towards electric mobility. The electric vehicle helps to achieve Zero-emission. However, there are some limitations too. The zero-emission Battery electric vehicle (BEV) can provide a limited range only; the market penetration is getting difficult because of an energy storage capability. The addition of an electric vehicle with a fuel cell unit and a hydrogen supply unit can increase the range and the energy capacity of the system. Fuel cell electric vehicle (FCEV) system is faster to refill compared to plug-in Battery electric vehicle (BEV).This study deals with a behavioral analysis of Polymer Electrolyte Membrane (PEM) Fuel cell; with different drive cycles. In this, a fuel cell model developed and simulated in the SIMULINK environment with different drive cycle and results were obtained. The fuel cell controls also were analyzed for the city start/stop cycle.The results obtained from the different drive cycles simulations were analyzed and discussed in this paper. Also, the fuel cell system behavioral analysis experimented on the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Connectivity in 2 Wheelers: Opportunities and Challenges

Robert Bosch Engineering & Bus Solutions, Ltd.-Sathyanarayana Rao
  • Technical Paper
  • 2019-28-2437
Published 2019-11-21 by SAE International in United States
Mobility is undergoing a “horses to cars”-sized shift that will reverberate across business and society for generations. Future of Mobility is mainly driven by 4 main pillars viz. Connected, Electrified, Automated and Shared Driving. With advancement in Communication Technology supplemented by huge customer base, Connectivity has proven to deliver better Services to the End-user.Connected Mobility is going to be the next Big Thing in the Mobility Arena. In this paper, we will try to qualitatively explore what Connected Mobility is all about and what it has to offer in terms of - Opportunities on one side as well as new challenges that were never witnessed in the realm of Mobility in the Past, with focus on the 2 wheeler segment. This paper focuses on Opportunities in terms of Location Based services, Vehicle Management, Data Analytics, Infotainment and possible Business scenarios and Models as well as challenges in Terms of Security and Data Ownership
Annotation ability available