Technical Paper collections have been re-named for better clarity and alignment.x

Your Selections

Fabrication
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

new

Study of OBD stageII Misfire Detection System for Small Motorcycles

Aisan Industry Co., Ltd.-Satoshi MIWA, Yuki IIBOSHI, Hirotaka FUKUTA
  • Technical Paper
  • 2019-32-0511
To be published on 2020-01-24 by Society of Automotive Engineers of Japan in Japan
In recent years, the shift to Fuel Injection (FI) system for motorcycles has been accelerated in response to the enhancement of exhaust emission regulations and the improvement of fuel efficiency for global environmental protection. In addition, On Board Diagnostics (OBD) was introduced to inform users of vehicle abnormalities and failures and prevent from emission failure in the market. OBD stageII requires enlargement of requirements and threshold detection. Seven items are presented in the EU5, Bharat Stage 6 (BS6). The misfire detection in small motorcycles has several problems.First, for the small motorcycle, a single-cylinder engine is the main and its combustion behavior cannot be compared with other cylinders. Consequently, it is difficult to detect misfire. For misfire detection, we focused on the difference in crank angular velocity during combustion stroke between normal combustion and misfire. The greatest gap was in crank angular velocity occurs at 0-180° crank angle [°CA]. With that, misfire detection control is established.We confirmed from the above control that misfire could be detected in the whole engine speed or load within the regulation.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

DEVELOPMENT OF PRODUCT-SERVICE SYSTEM BUSINESS MODEL: a study at Mercedes-Benz Brazil

Centro Universitario da FEI-Renato Ferreira Junior, Dra. Gabriela Scur
  • Technical Paper
  • 2019-36-0093
Published 2020-01-13 by SAE International in United States
With the increase in the use of information technology and communication, Internet of Things, Big Data, in addition to the concepts of sustainability, a new strategy has been structured, which aims to add value to the traditional PSS model, in the integration of new services to products. The challenge is how to change the current business model of a fully product-oriented (PO) company into a supplier of products with integrated services, in a new business model. From the theoretical propositions and best practices of companies that have implemented PSS businesses models, this paper propose and validate a systematization of strategic actions that make possible for product-oriented companies to change to a new PSS business model, and can be used as a guideline to the PSS implementation, as it compiles the key aspects needed for each strategic area, the important actions found in the literature and bibliographic references that may help in further research. In terms of theoretical relevance, this paper expands the PSS model, using the Big Data to generate new business. Managerial contribution was…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Unsettled Technology Domains in Robotics for Automation in Aerospace Manufacturing

Muelaner Engineering, Ltd.-Jody Muelaner
  • Research Report
  • EPR2019010
Published 2019-12-20 by SAE International in United States
Cost reduction and increasing production rates are driving automation of aerospace manufacturing. Articulated serial robots may replace bespoke gantry automation or human operations. Improved accuracy is key to enabling operations such as machining, additive manufacturing (AM), composite fabrication, drilling, automated program development, and inspection. New accuracy standards are needed to enable process-relevant comparisons between robotic systems.Accuracy can be improved through calibration of kinematic and joint stiffness parameters, joint output encoders, adaptive control that compensates for thermal expansion, and feedforward control that compensates for hysteresis and external loads. The impact of datuming could also be significantly reduced through modeling and optimization. Highly dynamic end effectors compensate high-frequency disturbances using inertial sensors and reaction masses. Global measurement feedback is a high-accuracy turnkey solution, but it is costly and has limited capability to compensate dynamic errors. Local measurement feedback is a mature, affordable, and highly accurate technology where the robot is required to position or align relative to some local feature. Locally clamped machine tools are an alternative approach that can utilize the flexibility of industrial robots while…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Prediction of Friction Durability in Off-Road Applications Based on Mechanistic Understanding of the Effects of Fluids and Surfaces on Clutch Friction

Afton Chemical Corporation-Mark Devlin, Atanu Adhvaryu
Komatsu Ltd.-Shinpei Kariwa, Toshiharu Abekawa
  • Technical Paper
  • 2019-01-2339
Published 2019-12-19 by SAE International in United States
After new transmission lubricants are developed there is an extensive validation program where friction durability testing is performed on multiple clutch materials. Each durability test can run for long terms and the entire validation program can take much longer terms. A well designed lubricant and friction material will deliver the necessary friction control for construction equipment to operate at optimum level. A mechanistic construct has been evaluated to calculate friction durability in clutch systems based on fluid and surface tribological properties. Fluid properties include both boundary frictional and rheological effects. Surface properties include elastic modulus, surface roughness, asperity density and asperity tip radius. Using this mechanistic construct friction durability has been predicted. In the past, researchers in the field have often associated lubricant induced glazing of the friction material surface as the cause of the loss of friction control in clutch systems. In the current study, results show that wear is also a dominant cause of friction loss. In short clutch friction tests the rate of change in surface properties and fluid properties have been…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Novel electrochemical capacitors with high-energy density using intercalated metal-organic framework electrodes

(TOYOTA Central R&D Labs., Inc.)-Nobuhiro Ogihara
  • Technical Paper
  • 2019-01-2260
Published 2019-12-19 by SAE International in United States
The energy-density improvement of capacitors while maintaining high power, long-term-cycle stability and safety is challenging. Asymmetric capacitors using non-faradaic and intercalation electrodes are proposed in order to achieve this. However the reported asymmetric capacitors with graphite-based negative electrode have a safety risk, which is an internal short circuit due to Li deposition when further high-energy density is performed. Here asymmetric capacitors consisting of intercalated metal-organic frameworks (iMOFs) negative operating potential range of 0.5-1.0 V vs. Li/Li+ that enable Li deposition reduction and activated carbon positive electrodes is proposed to construct a high volumetric energy (ca. 60 Wh L-1) and power densities with safety.
Annotation ability available

GMAW Process Parameter Optimization to Reduce Porosity Defect in a Longitudinal Seam Welding of Pressure Vessels

SAE International Journal of Materials and Manufacturing

Amrita Vishwa Vidyapeetham, India-A. Kuppusamy, K. Rameshkumar, A. Sumesh
ELGI Equipment Limited, India-S. Premkumar
  • Journal Article
  • 05-13-01-0005
Published 2019-12-02 by SAE International in United States
Pressure vessels are critical equipment used in industries for storing liquids or gases at a pressure significantly different from ambient conditions. Porosity is one of the major weld defects in pressure vessels that leads to failure during inspection and as well as during its service. Gas Metal Arc Welding (GMAW) process is widely used in industries to fabricate pressure vessels using carbon steel “IS 2062 E250BR” material for storing compressed air. The main objective of this article is to reduce the porosity defect in the longitudinal seam (LS) welding of the pressure vessels. Detailed analysis is carried out to identify the parameters which are influencing the porosity defect. Central Composite Design (CCD) and Response Surface Methodology (RSM) approaches are used to find the optimum value of the weld parameters which produce weld without porosity or any major defects in the pressure vessel. An experimental setup has been established and welding experiments have been conducted under a controlled environment. Experiments were conducted without any external disturbances ensuring clean weld surface and filler wire without any moisture,…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fabrication and Wear Characteristics Basalt Fiber Reinforced Polypropylene Matrix Composites

Dhanalakshmi Srinivasan Institute of Technology-Krishnaraj M, Thirugnana Sambandha T, Arun R
Trichy Engineering College-Vaitheeswaran T
  • Technical Paper
  • 2019-28-2570
Published 2019-11-21 by SAE International in United States
Generally brake pads are manufacturing by use of asbestos materials, that materials are chemically harmful and toxic nature to affect the human health. The present investigation is to fabricates polypropylene composites with mixing constant volume [5 vol.%] of alumina nano particles and different volume percentages [0%, 5%, 10% & 15%] of basalt Fiber by hand layup compression technique. The wear characteristics of polypropylene matrix composites were tested by dry sliding condition. The test was carried out pin on disc apparatus, configured with hardened steel counter-face at elevated temperature. The load was applied 10 N to 30 N with the interval of 10 N and varying of sliding speed 300 rpm to 900 rpm with the interval of 300 rpm for the time period of 0-180 sec. The wear rate was decreases with addition of alumina nano particle and the frictional force was increases due to basalt Fiber content present in the composites. The co-efficient of friction was increases 0.1 to 0.66 under normal loading condition.
Annotation ability available

Miniaturizing Medical Imaging, Sensing Technology

  • Magazine Article
  • TBMG-35501
Published 2019-11-01 by Tech Briefs Media Group in United States

Scientists have used a microchip to map the back of the eye for disease diagnosis. This is the first time that technical obstacles have been overcome to fabricate a miniature device able to capture high-quality images.

Nylon Provides Building Block for Electronic Devices

  • Magazine Article
  • TBMG-35514
Published 2019-11-01 by Tech Briefs Media Group in United States

Thin nylon films are several 100 times thinner than human hair and could thus be attractive for applications in bendable electronic devices or for electronics in clothing. The researchers developed a method to fabricate ferroelectric nylon thin-film capacitors by dissolving nylon in a mixture of trifluoroacetic acid and acetone and solidifying it again in vacuum. They were able to realize thin nylon films that are typically only a few hundred nanometers thick.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Analysis of Natural Fibre Reinforced Epoxy Composites for Automobile Hood

SRM Institute Of Science And Technology-Akhil Kumar Guduru, V N B Prasad Sodisetty, Vidya Prudhvi Sai Katari
Published 2019-10-11 by SAE International in United States
The need for eco-friendly materials is recently increasing in the automobile and aerospace sectors. Material selection for automobile components is influenced by various factors such as cost, weight and strength. Natural fibers offers various advantages over conventional materials such as environmental friendly, easily available, recyclable and higher specific strength. Among the natural fibers Sisal and Kenaf fibers are selected for present study due to their good mechanical properties and availability. Kenaf fibers have great potential to be used as construction and automotive materials due to their long fibers which are derived from the bast. Sisal fibers do not absorb moisture and possess good impact, sound absorbing properties and high fire resistance properties. Epoxy LY556 is selected as matrix material to bind the combination of these two natural fibers due to its high temperature resistance and adherence to reinforcements. Alkaline treatment was carried out to remove the moisture from the natural fibers. Fabrication of epoxy/Kenaf fibre/Sisal Fibre composite materials of different stacking sequence was carried out by Vacuum Assisted Resin Transfer Molding (VARTM) method. These composites…
This content contains downloadable datasets
Annotation ability available