Your Selections

Energy consumption
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Tools for the Conceptual Design of a Stratospheric Hybrid Platform

CIRA - Italian Aerospace Research Centre-Vincenzo Rosario Baraniello, Giuseppe Persechino, Roberto Borsa
  • Technical Paper
  • 2020-01-0025
To be published on 2020-03-10 by SAE International in United States
The Italian Aerospace Research Center is currently developing the design of a HAPS (High Altitude Pseudo Satellite). Different HAPS configurations have been proposed in recent years. Airbus Zephyr family and Aurora Odysseus are based on the flying wing configuration. Thales Stratobus is an airship, while Google Loon project is based on balloons. Our proposal concerns a hybrid configuration where the weight is balanced by both aerodynamic and aerostatic forces. In this paper we present the tools we have implemented to develop the conceptual design of our platform. The tools have been implemented in Mathworks Matlab® and Grasshopper® integrated with Rhino 3-D. In the Matlab environment, we have developed an optimization algorithm which can estimate some geometric and energetic global parameters of the platform (weight, surface, volume, required power, width, length and height) using as input the desired speed, altitude and period of the year in which the mission will be performed. In this algorithm, we have included a modelling of the principal subsystems affecting the overall platform weight and energy consumption and availability, the aerodynamic…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study on the decision process of basic specification in development of general purpose engine

Honda R&D Co., Ltd.-Takayuki Aoki, Takahiro Tsuchiyama
  • Technical Paper
  • 2019-32-0580
To be published on 2020-01-24 by Society of Automotive Engineers of Japan in Japan
Social interest in global environmental issues has remained in the forefront during recent years, and as a result, internal combustion engines are expected to have further improved fuel efficiency and reduced exhaust emissions. General purpose engines are demanded for reduced cost in addition to various types of displacement developments. If optimum specifications are examined for each engine displacement and incorporated in the parts shapes, the number of dedicated parts for each engine displacement would increase, which is not desirable from a development/production cost-wise standpoint. It is considered important during the development of engines to efficiently and economically cope with market needs including improved specific power and fuel consumption. Therefore, it was considered necessary to improve combustion performance by enhanced in-cylinder flow and to commonize parts. Then, this study was designed to establish an approach for decision of engine specifications with the perspective of multiple displacement development after satisfying the target performance by combustion improvement. The long stroke and valve angle were adjusted so as to examine specifications that enable enhanced in-cylinder flow with multiple displacements.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

ALL-WHEEL DRIVE ELECTRIC VEHICLE MODELING AND PERFORMANCE OPTIMIZATION

Department of Mechanical and Aerospace Engineering, Politecn-H. de Carvalho Pinheiro, E. Galanzino, A. Messana, L. Sisca, A. Ferraris, A. G. Airale, M. Carello
  • Technical Paper
  • 2019-36-0197
Published 2020-01-13 by SAE International in United States
Electrification of the powertrain is one of the most promising trends in the automotive industry. Among the novel architectures, this paper aims to study the latent advantages provided by in-wheel motors, particularly an All-Wheel-Drive powertrain composed by four electric machines directly connected to each wheel-hub of a high performance vehicle. Beyond the well-known packaging advantage allowed by the in-wheel motor, the presence of four independent torque sources allows more flexible and complex control strategies of torque allocation. The study explores three different control modules working simultaneously: torque vectoring, regenerative braking and energy efficiency optimization protocol. The main objectives of the project are: improving handling, measured through the lap time of the virtual driver in a simulated track, and enhance energy efficiency, assessed by the battery state of charge variation during standard events. The torque vectoring strategy is based on a feedback PID controller working in parallel to a feedforward logic that predict the desired behavior based on the driver demands (such as steering angle) and vehicle states (chassis accelerations and velocities). The regenerative braking manages…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Factorial Analysis of Otto Cycle Engine Operating Parameters on the Exhaust Gases Temperature

Federal Institute of the Espírito Santo-Guilherme A. Emerick, Daniel Z. Carmago, Jordan D. Cussuol, Matheus A. Limas, Alan P. S. Siqueira, Lucas H. P. Deoclecio, Filipe A. F. Monhol
  • Technical Paper
  • 2019-36-0205
Published 2020-01-13 by SAE International in United States
Internal combustion engines are thermal machines that produce work by burning fuel and have a high power-to-weight ratio. A large part of the energy released in the combustion is lost with the exhaust gases and therefore is not converted to useful work. Thus, the understanding of the effects of engine operating factors such as rotation, type of fuel and type of coolant fluid on exhaust gases temperature, which is related to their specific enthalpy, allows optimizing engine performance. In this work, the operating parameters effect on the exhaust temperature were evaluated by means of a 2k factorial design of test runs performed on a Renault CLIO 1.6 Total Flex engine installed in a test bench. The factorial effects were evaluated using the ANOVA method with a significance level of 5%. The investigated factors levels were: rotation (1500 rpm and 3000 rpm), fuel (alcohol and gasoline), coolant (water without additive and water with additive). The results showed that an increase in rotation and the substitution of alcohol by gasoline increase the exhaust gases temperature, which increases…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Lubricant Impact on Friction by Engine Component: A Motored Friction Tear Down Assessment of a Production 3.6L Engine

Ricardo Inc.-Stephen Cakebread
Ricardo UK Ltd-Phil Carden, Andrew de Vries
  • Technical Paper
  • 2019-01-2239
Published 2019-12-19 by SAE International in United States
Worldwide, Fuel Economy (FE) legislation increasingly influences vehicle and engine design, and drives friction reduction. The link between lubricant formulation and mechanical friction is complex and depends on engine component design and test cycle. This Motored Friction Tear Down (MFTD) study characterizes the friction within a 3.6L V6 engine under operating conditions and lubricant choices relevant to the legislated FE cycles. The high-fidelity MFTD results presented indicate that the engine is a low-friction engine tolerant of low viscosity oils. Experiments spanned four groups of engine hardware (reciprocating, crankshaft, valvetrain, oil pump), five lubricants (four candidates referenced against an SAE 0W-20) and five temperature regimes. The candidate lubricants explored the impact of base oil viscosity, viscosity modifier (VM) and friction modifier (FM) content. The results indicate that (i) a prototype SAE 0W-8 fluid generated the largest overall reduction in friction, (ii) the valvetrain group responded well to FM content, and (iii) an SAE 0W-20 with alternative VM performed remarkably well at low temperatures (-7°C to 30°C). In order to understand the significance of that engine friction…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Particle number emissions from standard and hybrid SI passenger cars

National Laboratory of Automotive Performance & Emission-Xin Wang, Yunshan Ge, Wenlin Yu, Bin Song
School of Chemical and Process Engineering, The University o-Daisy Thomas, Hu Li, Yan Kang, Karl Ropkins
  • Technical Paper
  • 2019-01-2194
Published 2019-12-19 by SAE International in United States
This paper presents the PN (Particle Number) and some gaseous emissions results from a group of SI (Spark Ignition) passenger cars including HEV (Hybrid Electric Vehicle), PFI (Port Fuel Injection) and GDI (Gasoline Direction Injection) vehicles. The PEMS (Portable Emission Measurement System) was used for on-board emission measurements. The vehicles were driven using the routes complying with the EU Real Driving Emissions (RDE) test procedures required in the European Commission Regulation (EU) 2016/427, i.e. starting in an urban driving mode and then continuing into a rural driving mode and ending with motorway driving mode part. The percentage of these three segments is approximately 33%, 33%, 33% respectively. The total test time was between 90 to 120 minutes.The vehicles’ driving parameters such as road speed, tailpipe exhaust temperatures and energy consumption were recorded and their correlations with emissions were investigated. The results show that most of the PN spikes were related to acceleration, deceleration and engine restart events. Comparing accumulated PN from different vehicles, total PN from the hybrid car was the lowest, even though this…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Investigation of Electric Vehicle Performance and Energy Consumption on Chassis Dynamometer Using Drive Cycle Analysis

SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy

CSIR-Indian Institute of Petroleum, India-Gananath Doulat Thakre
Indian Institute of Petroleum CSIR, India-Robindro Lairenlakpam
  • Journal Article
  • 13-01-01-0002
Published 2019-12-02 by SAE International in United States
This article reports an experimental study carried out to investigate the vehicle performance and energy consumption (EC) of an electric vehicle (EV) on three different driving cycles using drive cycle analysis. The driving cycles are the Indian Driving Cycle (IDC), Modified Indian Driving Cycle (MIDC) and Worldwide harmonized Light vehicles Test Cycle (WLTC). A new prototype electric powertrain was developed using an indigenous three-phase induction motor (3PIM), Li-ion battery (LiB) pack, vector motor controller, and newly developed mechanical parts. In this research work, a pollution-causing gasoline car (Maruti Zen) was converted into an EV by using the new powertrain. The EV conversion vehicle was used as the test vehicle. After the removal of the Internal Combustion Engine (ICE) the new powertrain was integrated with the vehicle’s gearbox (GB) system which was configured on a single motor, fixed gear configuration having a gear ratio of 1.28:1. The EV performance tests were carried out on the chassis dynamometer that followed the driving cycles. The maximum speed test showed a top speed of 64 km/h for the EV.…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Electric Bus Body

ARAI Academy-Amitabh Das, Yash Jain
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2394
Published 2019-11-21 by SAE International in United States
Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Dedicated Lubricant for Hydrogen Fuelled Spark Ignition Engine

Indian Institute of Technology - Delhi-K A Subramanian
Indian Oil Corporation Limited-Sauhard Singh, Verinder Kumar Bathla, Reji Mathai
  • Technical Paper
  • 2019-28-2511
Published 2019-11-21 by SAE International in United States
Hydrocarbon based fossil fuels are being used as the main energy resource, burning of which produces carbon dioxide (CO2) and other emissions harmful to environment. Moreover, CO2 is considered as the main contributor to global warming or greenhouse effect. These are the main drivers behind the ongoing research & development in the area of alternative energy sources. Among various alternatives, Hydrogen is identified as the most promising alternative fuel. Hydrogen is the cleanest fuel having some of the most attractive features such as various methods of production from renewable energy (solar, wind, biomass etc.), from fossil fuels etc. H2 as a fuel can be used in various applications such as spark ignition engine, fuel cells etc.Hydrogen has low ignition energy and ensures easy ignition of the ultra-lean mixture with air. The flame speed of hydrogen is about five times higher than methane and gasoline which allows hydrogen fuelled IC engines to have relatively reduced cyclic variations than that of with methane and gasoline. High flame speed also helps to make the combustion closer to constant…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance & Efficiency Improvement of Electric Vehicle Power Train

International Centre for Automotive Technology-Devesh Pareek
  • Technical Paper
  • 2019-28-2483
Published 2019-11-21 by SAE International in United States
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b. Optimization of Design Specs and duty cycle based on real world driving cycles. c. Innovative Heat dissipation techniques to minimize energy loss to heat. d. Efficient Electrical to Chemical Energy conversion and vice versa through use of optimization techniques based on…
This content contains downloadable datasets
Annotation ability available