Your Selections

Energy consumption
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Towards a quiet vehicle cabin through digitalization of HVAC systems and subsystems aeroacoustics testing and design

Dassault Systemes SIMULIA-Vincent Vidal, Adrien Mann, Jonas Verriere, Minsuk Kim
Valeo Thermal Systems-Fabrice Ailloud, Manuel Henner, Olivier Cheriaux
  • Technical Paper
  • 2019-01-1476
To be published on 2019-06-05 by SAE International in United States
With the rise of electric autonomous vehicles, it has become clear that the cabin of tomorrow will drastically evolve to both improve ride experience and reduce energy consumption. In addition, autonomy will change the transportation paradigm, leading to a reinvention of the cabin seating layout which will add pressure on climate systems team to design quiet and energy efficient systems. Consequently, Heat and Ventilation Air Conditioning (HVAC) systems designers have to deliver products which performs acoustically better than before, but often with less development time. To success under such constraints, designers need access to methods providing both assessment of the system (or subsystems) acoustic performance, and identification of where the designs need to be improve to reduce noise levels. Such methods are often needed before a physical prototype is requested, and thus can only be achieved in a timely manner through digital testing. Previous studies have demonstrated the ability of a CFD/CAA approach based on the Lattice Boltzmann Method (LBM) to predict HVAC system noise including real and complex ducts, registers, mixing unit and blower…
 

PHEV Real World Driving Cycle and Energy and Fuel Consumption Reduction Potential for Connected and Automated Vehicles

Michigan Technological University-Darrell Robinette, Eric Kostreva, Alexandra Krisztian, Anthony Lackey, Christopher Morgan, Joshua Orlando, Neeraj Rama
  • Technical Paper
  • 2019-01-0307
To be published on 2019-04-02 by SAE International in United States
This paper presents real world driving energy and fuel consumption results for the second-generation Chevrolet Volt plug-in hybrid electric vehicle (PHEV). A drive cycle, local to Michigan Technological University, was designed to mimic urban and highway driving test cycles in terms of distance, transients and average velocity, but with significant elevation changes to establish an energy intensive real world driving cycle for assessing potential energy savings for connected and automated vehicle control. The investigation began by establishing baseline and repeatability of energy consumption at various battery states of charges. It was determined that drive cycle energy consumption under a randomized set of boundary conditions varied within 3.4% of mean energy consumption regardless of initial battery state of charge. After completing 30 baseline drive cycles, a design for six sigma (DFSS) L18 array was designed to look at sensitivity of a range of parameters to energy consumption as related to connected and automated vehicles to target highest return on engineering development effort. The parameters explored in the DFSS array that showed the most sensitivity, in order…
 

Analysis of Passive Low Power Phase Change Heat Dissipation Method for Electric Vehicle Motor

Suizhou-WUT Industry Research Institute-Gangfeng Tan
Wuhan University of Technology-Shiping Huang, Yishi Wang, Jianjie Kuang, Jiakang Quan, Xiaofei Ma
  • Technical Paper
  • 2019-01-1256
To be published on 2019-04-02 by SAE International in United States
The electric vehicle motor is developing toward high power density, at the same time brings serious temperature rise problem, which affect the driving motor performance, efficiency, and useful life. Liquid cooling is usually used to solve the problem, but its energy consumption is large and the reliability is poor. In order to solve this problem, this paper proposes a heat dissipation method to improve the reliability and energy efficiency of the driving motor heat dissipation system. The method uses heat pipes heat transfer, and the heat pipes cold end are cooled by vehicle facing the wind. By establishing the motor temperature rise model, heat transfer model and vehicle dynamics model, this paper analyzes the maximum temperature region and reliability of the driving motor heat dissipation system, calculates and analyzes the efficiency of the driving motor under different driving conditions. The results show that with the heat dissipation method of this paper, the reliability of the driving motor cooling system has been improved; the overall efficiency of the driving motor can be increased by 7.4%-27.9% and…
Datasets icon
Annotation icon
 

Research on Key Factors for Range and Energy Consumption of Electric Vehicles

Chongqing Changan New Energy Auto Co.Ltd.-Chen Zhao, Guan Gong, Cheng Yu, Ying Liu, Shu Zhong, Yanxing Song, Chenghao Deng, Anjian Zhou, Honglu Ye
  • Technical Paper
  • 2019-01-0723
To be published on 2019-04-02 by SAE International in United States
Investigations have been carried out to examine the potential to optimize the energy consumption and drive range of the Electric Vehicles (EV). Theoretically, the energy consumption is strongly influenced by system efficiency, coasting resistance and energy recovery technology. In this paper, these three aspects have been studied in detail through both simulation tool and experimental test. Research has been conducted on a Changan sedan EV to explore the influence of each factor on the energy consumption and drive range. The most paramount factor is the vehicle coasting resistance, followed by the power-train system efficiency. To reduce the coasting resistance, interests can be drawn to the application of tire with low resistance coefficient, low friction brake clamp and the modification of vehicle styling. The drive-train efficiency includes the motor efficiency, inverter efficiency and the gearbox efficiency. Interestingly, the effect of energy recovery technology is sensitive to the driving conditions. The I-pedal technology which can supply deceleration up to 0.2g has little influence over NEDC but can extend the range over real-world driving by up to 10%…
 

Design of a Grid-Friendly DC Fast Charge Station with Second Life Batteries

Ohio State University-Matilde D'Arpino, Massimo Cancian
  • Technical Paper
  • 2019-01-0867
To be published on 2019-04-02 by SAE International in United States
DC-fast charge (DCFC) may be amenable for widespread EV adoption. However, there are potential challenges associated with implementation and operation of the DCFC infrastructures. The integration of energy storage systems can limit the scale of grid installation required for DCFC and enable more efficient grid energy usage. In addition, second-life batteries (SLBs) can find application in DCFC, significantly reducing installation cost when compared to solutions based on new battery packs. However, both system architecture and control strategy require optimization to ensure an optimal use of SLBs, including degradation and thermal aspects. This study proposes an application of automotive SLBs for DCFC stations where high power grid connection is not available or feasible. Several SLBs are connected to the grid by means of low power chargers (e.g. L2 charging station), and a DC/DC converter controls the power to the EV power dispenser. The architecture of the DC bus, the size and state of health of the battery system determine efficiency, cost, and reliability of the station. A technical and economic comparison is proposed, evaluating solutions with…
 

Features of modeling of processes of thermal preparation of the transport engine on the basis of thermal accumulators of a phase transition

Belarusian National Technical University-Heorgi Kukharonak
Donbas National Academy of Civil Engineering & Architecture-Valery Aleksandrov
  • Technical Paper
  • 2019-01-0906
To be published on 2019-04-02 by SAE International in United States
The utilization of different types of energy in phase-transitional thermal accumulators and its further use for thermal development of different subsystems of hybrid vehicles enables to significantly increase their operational efficiency. The system of the combined utilization of thermal and electrical energy in phase-transitional thermal accumulators (TA) is offered. To charge TA, it uses thermal energy of exhaust gas, a coolant and motor oil of the internal combustion engine and electrical energy which is utilized by energy recovery system when braking the vehicle. It consists of consecutive stages of heat accumulation when charging TA from different energy sources of the hybrid vehicle, its storage and use for rapid heating of vehicle separate subsystems. The main heat and power characteristics of system components and heat accumulating materials used in phase-transitional TA have been justified. Schemes and designs of a physical model to utilize electrical energy using high-capacity condensers for charging phase-transitional TA have been offered. The results of experimental and computational studies show theoretical comparison of the main indicators of the developed system in charging phase…
 

The 6-Inlet Single Stage Axial Turbine Concept for Pulse-Turbocharging: A Numerical Investigation

Scania CV AB-Nicholas Anton, Per Birkestad
  • Technical Paper
  • 2019-01-0323
To be published on 2019-04-02 by SAE International in United States
The demand for high-efficiency engines has never been greater as energy consumption and emission reductions are key ingredients for continued competitiveness in today’s transportation industry. A main contributor to recent and future improvement of the internal combustion engine is the gas exchange process. By utilizing the exhaust energy in the turbine stage of an exhaust turbocharger, the pumping work can be improved resulting in significant gains of engine system efficiency. Two main aspects can be identified with regards to the turbine design that are crucial: The level of exhaust pulse separation and turbine efficiency at high pressure ratios. For a pulse-turbocharged engine both aspects need to be considered in order to gain full benefit of the exhaust energy utilization process.In this study, a novel axial turbine stage concept with divided inlets is presented. The turbine stage is part of a prototype turbocharger for a performance-optimized Scania 13 liter heavy-duty diesel engine with focus on exhaust energy utilization. The concept design makes it possible to combine both high efficiency levels and pulse separation.At “on-engine” operation, the…
Annotation icon
 

HyPACE - Hybrid Petrol Advance Combustion Engine - Advanced Boosting System for Extended Stoichiometric Operation and Improved Dynamic Response

BorgWarner Turbo Systems-Andrew Taylor
Jaguar Land Rover-Jonathan Hartland, James Harris
  • Technical Paper
  • 2019-01-0325
To be published on 2019-04-02 by SAE International in United States
The HyPACE (Hybrid Petrol Advanced Combustion Engine) project is a part UK government funded research project established to develop a high thermal efficiency petrol engine that is optimized for hybrid vehicle applications. The project combines the capabilities of a number of partners (Jaguar Land Rover, BorgWarner, MAHLE Powertrain, Johnson Matthey, Cambustion and Oxford University) with the target of achieving a 10% vehicle fuel consumption reduction, whilst still achieving a 90 to 100 kW/liter power rating through the novel application of a combination of new technologies. The baseline engine for the project was Jaguar Land Rover’s new Ingenium 4-cylinder petrol engine which includes an advanced continuously variable intake valve actuation mechanism. A concept study has been undertaken and detailed combustion Computational Fluid Dynamics (CFD) models have been developed to enable the optimization of the combustion system layout of the engine. Gas-dynamic simulations have been used to configure the revised high and low pressure Exhaust Gas Recirculation (EGR) circuits and the new boosting system, both provided by BorgWarner. The HyPACE boosting system utilizes a BorgWarner 48V eTurbo™,…
Datasets icon
Annotation icon
 

Analysis and Research on Vibration Characteristics of Reclaiming Energy Suspension Based on Adjustable Load

Chongqing University-Zheng Ling, Wu Hang
  • Technical Paper
  • 2019-01-0453
To be published on 2019-04-02 by SAE International in United States
Wheel-side drive electric vehicle is electric vehicle that uses wheel motor to drive wheel directly. Because of the introduction of the hub motor, the quality of the vehicle's non-spring load increases obviously, not only affects the ride comfort, but also reduces the driving safety. Active suspension can significantly improve overall vehicle performance, but high energy consumption has been one of the main factors restricting its promotion in the market. The use of an electromagnetic linear motor as the actuator of the active suspension provides an opportunity for this contradictory solution. Using the principle of electromagnetic induction, the linear motor can transform the vibration energy of the vehicle into the electricity that can be directly used by the vehicle, and realize the purpose of improving the vehicle performance while reducing the energy consumption. In order to realize that purpose, a dynamic model of vehicle vertical 7-DOF active suspension is established in this paper. Based on optimal control theory, a load adjustable reclaiming energy suspension controller is designed. The relevant parameters of suspension are optimized by particle…
 

Full Protection Scheme and Energy Optimization Management of the Battery in Internal Combustion Engine Vehicles Based on Power Partitioning Model

Tsinghua University-Wei Wei Kong, Yugong Luo, Yunlong Qi, Yongsheng Wang
  • Technical Paper
  • 2019-01-1205
To be published on 2019-04-02 by SAE International in United States
As the only energy storage component in the internal combustion engine vehicles (ICEVs), the battery is lack of comprehensive supervision and effective protection. Excessive discharge or aging cannot be detected and dealt with, which may lead to damage of the battery, even startup failure of the vehicle. In this paper, a full protection and optimization management scheme of the battery is proposed, to achieve comprehensive protection of the battery and energy optimization. Firstly, power partitioning model of the battery is established to reveal the battery characteristics in different states, which divides the battery into several function zones. Then, based on the power partitioning model, over discharge protection and graded overcurrent protection method are proposed, to achieve full protection of the battery. Thirdly, energy optimization management strategy based on generator’s multimode operation is introduced. Finally, to verify the validity and feasibility of the proposed method, tests are performed on the vehicle and test bench. The results reveal that overcurrent protection and over discharge protection of the battery is achieved, and the vehicle start-up capability is assured.…
Datasets icon
Annotation icon