Your Selections

Dampers and shock absorbers
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Spring and damper tuning of an ATV to reducing transmissibility

ARAI Academy-Rajat Girish Kanade, Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2401
To be published on 2019-11-21 by SAE International in United States
The application in vehicle ride and handling has been mostly subjective or intuitive. There are several methods to improve vehicle stability and handling. One of the methods is suspension tuning. The objective of this work is to perform dynamical analysis of suspension by spring and damper tuning to reduce transmissibility for an all-terrain vehicle. A baseline spring rate data is used for tuning to provide better ride. The Fox air shock absorbers with progressive damping are used for testing. First the dynamics simulation is carried out by using ADAMS CAR tool. A detailed characteristic of the air shocks is obtained at various loading conditions by experimentation using test rig. Based on it, the simulation has been carried out for desired tuning parameters of spring and damper to improve stability. The speculated optimum setting is validated on an all-terrain vehicle (ATV) using ultrasonic sensors and accelerometers, by varying vehicle speed and bump heights to evaluate the transmissibility of the suspension. The acquired data shows behaviour of the suspension and the influence of the main parameters in…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation of Transmissibility of an all-terrain vehicle with spring and damper tuning.

ARAI Academy-Rajat Girish Kanade, Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2423
To be published on 2019-11-21 by SAE International in United States
The application in ride and handling development has been mostly subjective or intuitive. Suspension settings are based on the opinions of experts. The product of this research will enable to quantify the performance of a suspension in terms of its ability to minimize the transmission of road irregularities to the chassis and achieve good mechanical grip with the road surface. This work presents a dynamical analysis of the transmissibility of an off-road vehicle suspension, developed in VIT Vellore for Baja SAE India competition. A baseline spring rates curve for ride is developed to provide a solid foundation to tune from. The shock absorbers used for testing are Fox Float Evol R air shock absorbers with progressive damping. A thorough data acquisition of the force curves for shocks from a test rig is done. A detailed characteristic of the air shocks is obtained at various loading conditions. The basic damping curve is modified towards the desired ideal nature with the data obtained. The speculated optimum setting is validated on the ATV vehicle with ultrasonic sensors and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Energy Harvesting E-SHOCK for Future Mobility

Schaeffler Group-Prajod Ayyappath
Schaeffler India Ltd-PS SATYANARAYANA, Kalyan Bhairi
  • Technical Paper
  • 2019-28-2506
To be published on 2019-11-21 by SAE International in United States
India has emerged as the world’s biggest market for Two-wheelers and Four-wheeler. Besides rising incomes and growing infrastructure in all areas, one big reason for the spurt in sales has been ease of zipping in and out of chaotic city traffic along with road irregularities and potholes. Furthermore, the efficiency increase in the Shock absorber within the vehicle have high demands to use of regenerative solutions, in which e-system can be employed as to recover part of the energy otherwise dissipated in form of heat. The Smart e-Shock can charge battery and illuminate accessories of vehicle. Also, the e-shock can provide the various damping characteristics by changing the Electric load on to it to make system as Semi-Active Suspension. This Smart e-Shock system is based on unique and patented concept of constraining the reciprocating motion of the shock absorber in to a single sense of rotation of e-system and the energy is recuperated and given to the battery from the e-system. This retrofittable design can provide better vehicle dynamics-with various driving modes (Comfort, Normal, Sport,…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modeling and Analysis of Helical and Wave Spring Behavior for Automobile Suspension

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Sathishkumar Kuppuraj, Girish Vishnu Rajaram Ganesan, Jayasuriya Nandhagopal
  • Technical Paper
  • 2019-28-0130
To be published on 2019-10-11 by SAE International in United States
The suspension is an indispensable element of automobiles which plays a crucial role in maintaining stability and the ride comfort. Helical springs are used in automobile suspension for many decades. The stiffness of the spring and presence of shock absorber plays a major role while negotiating a huge amount of load. Therefore, the cost of the suspension increases proportionally in commercial vehicles. In this present work, a helical and wave spring is designed and static cum dynamic analysis is done by using ANSYS 18.1 for comparing their performance and to eliminate the downside of the suspension. The geometry of the helical spring is designed using the helix curve and wave spring is designed using Sinusoidal equation. Modeling of both the springs is done using Solid works 2018. Chrome silicon and music wire are chosen as a spring material. The responses like stress and deflection of helical spring and wave spring for both the materials under static loads of 3000 N, 3500 N, 4000 N is obtained. Further, the dynamic analysis is conducted on both the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Gland Design: Nominal 3/8 Inch Cross Section for Compression-Type Seals

A-5B Gears, Struts and Couplings Committee
  • Aerospace Standard
  • AS4832A
  • Current
Published 2019-06-17 by SAE International in United States
This SAE Aerospace Standard (AS) offers gland details for a 0.364 inch (9.246 mm) cross-section gland (nominal 3/8 inch) with proposed gland lengths for compression-type seals with two backup rings over a range of 7 to 21 inches (178 to 533 mm) in diameter. The dash number system used is similar to AS568A. A 600 series has been chosen as a logical extension of AS568A, and the 625 number has been selected for the initial number, since 300 and 400 series in MIL-G-5514 and AS4716 begin with 325 and 425 sizes. Seal configurations and design are not a part of this document. This gland is for use with compression-type seals including, but not limited to, O-rings, T-rings, D-rings, cap seals, etc.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation Analysis of a Dual-Purpose Intelligent Mobile Platform for Highway and Railway

Nan Sun
University of Science & Development-Wenming Zhang
Published 2019-06-05 by SAE International in United States
Railways play a huge role in China's transportation industry. In order to ensure intelligence, advanced technology and high efficiency in functions such as railway inspection, rescue and transportation, a dual-purpose intelligent mobile platform for both roads and railways was developed. Due to the height limitation of this platform, resilient wheels and rubber dampers with short stroke are used as the suspension system for the rail chassis. Based on this special suspension form, the dynamic model of the whole platform is derived, and the simulation model of the whole platform is established in the simulation software. The effects of resilient wheels’ axial stiffness, radial stiffness and vertical stiffness, lateral stiffness of rubber dampers on the vertical and lateral stability of the platform were studied. It is found that the increase of the radial stiffness of the resilient wheels will deteriorate the vertical stability and lateral stability of the platform. The increase in the axial stiffness of the resilient wheels will deteriorate the vertical stability of the platform and the lateral stability will be improved. The increase…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation of Damping Force for a Magneto-Rheological (MR) Damper Featuring Piston Bypass Holes

Li Guojie
Published 2019-06-05 by SAE International in United States
The magneto-rheological (MR) damper featuring piston bypass holes is an MR damper with improved mechanical properties relative to conventional MR dampers. It brings much better ride comfort for occupants by minimizing the harshness component from disturbing the smooth ride of vehicles. However, few studies on this MR damper featuring piston bypass holes are found. This work is aimed to study the principle that this MR damper works on by experiment, modelling and simulation. The MR damper featuring piston bypass holes is tested on MTS system. A mathematical model for the MR damper is established. Head loss and local head loss caused by the viscosity of the MR fluid are both adopted in the mathematical model. The Eyring model is adopted to describe the mechanical behavior of MR fluid. The result of simulation is in good agreement with experimental data. When the local head loss is eliminated from the mathematical model, simulation accuracy decreases. These results indicate that the local head loss due to sudden contraction and sudden expansion at entrance and exit of piston bypass…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Impact Force 1D Model for Powertrain Component

Denso-Yuma Yoshimaru, Makoto Kondo, Yukie Omuro, Masashi Inaba
Published 2019-06-05 by SAE International in United States
Electromagnetic valves excellent in sealing properties and resistant to sliding are often used in powertrain equipment installed in gasoline- or diesel-engine vehicles. An electromagnetic valve has the function of moving internal valve members by means of electromagnetic force generated by the application of a voltage and thereby changing the flow path. When an electromagnetic valve operates, however, the valve members impact with one another, emitting impact noise caused by it. With the requirement for low noise in electromagnetic valves having become stricter recently from the viewpoint of comfort in the passenger compartment, predicting the noise is needed at the design stage.With this background, this paper describes the development of a 1D model of impact force that will enable the noise and the product performance to be examined simultaneously for a GDI (gasoline direct injection) high pressure pump. In contrast to the conventional model in which a movable member is taken as a mass point with a spring and a damper placed at the impact section, this paper proposes a technique in which a spring-mass model…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Dynamics of Amphibious All-Terrain Vehicle’s Chassis Having Vibration Energy Harvesting Dampers

Mega Automation, Inc.-Dmytriy Gurevych
Nermar, Ltd.-George Nerubenko
Published 2019-06-05 by SAE International in United States
The rural off-road exploiting of amphibious all-terrain vehicles leads to the intensive vibrations of all parts of a vehicle, and specifically of its chassis. The tested amphibian vehicle’s chassis has the lowest natural frequency of 19.34 Hz. The Vibration Energy Harvesting Damper (VEHD) is used for mitigation of chassis vibrations. VEHD provides the mutually interconnected results: a reduction of undesired vibration levels and a generating of the additional electrical power. Newly patented VEHD consists of two main components: Tuned Mass Damper and Generator of Electricity. The perspective feature of proposed VEHD is the ability of effective vibration damping in a broad range of frequencies due to implementation of a control device, while that device is keeping automatically the changing natural frequency of VEHD equals to current frequency of the external force. The mathematical simulation analysis based on parameters of the amphibious all-terrain vehicle chassis is developed. The experiments arranged on recently designed amphibious all-terrain vehicle illustrate the compliance with theoretical predictions, and efficiency of proposed VEHD operating mainly in low frequency interval. An analysis of…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Landing Gear Structural Health Monitoring

A-5 Aerospace Landing Gear Systems Committee
  • Aerospace Standard
  • AIR6168A
  • Current
Published 2019-05-23 by SAE International in United States
This SAE Aerospace Information Report (AIR) discusses past and present approaches for monitoring the landing gear structure and shock absorber (servicing), opportunities for corrosion detection, methods for transient overload detection, techniques for measuring the forces seen by the landing gear structure, and methods for determining the fatigue state of the landing gear structure. Landing gear tire condition and tire pressure monitoring are detailed in ARP6225, AIR4830, and ARP6137, respectively. Aircraft Brake Temperature Monitoring Systems (BTMS) are detailed in AS1145.
This content contains downloadable datasets
Annotation ability available