Your Selections

Copper
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Determine Thermal Fatigue Requirements for PEPS Antenna Copper Wire over Vehicle Lifetime with defined Reliability Requirements.

GMTCI-Abhinav Jauhri
  • Technical Paper
  • 2019-28-2582
To be published on 2019-11-21 by SAE International in United States
Reliability states the degree to which the result of a measurement, calculation, or specification can be depended on to be accurate. And, tests according to GMW specifications represents a minimum of 15 years of vehicle life time with defined Reliability and Confidence level. In this work, actual number of thermal cycles for Thermal Fatigue tests (Thermal Shock and Power Temperature Cycle) are calculated for Copper Wire whose Coffin Manson exponent is 5. Overstressing the PEPS Antenna under thermal fatigue requirement (defined number of thermal cycles based on Reliability and Confidence requirements) will lead to broken Copper wire which will result in component’s functional failure and thus impossible to continue reliability testing. The objective of this paper is to determine thermal fatigue requirements for Antenna’s Copper wire whose Coffin Manson exponent is 5. Testing with exact number of thermal cycles will reduce the validation failures owing to broken Copper wire and thus save incurred revalidation cost. The current study is limited to only adjusting the thermal fatigue requirements (Number of Thermal Cycles) for only specific E/E…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Parameter Optimization during Minimum Quantity Lubrication Turning of Inconel 625 Alloy with CUO, Al2O3 and CNT Nanoparticles Dispersed Vegetable-Oil-Based Cutting Fluid

Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan
  • Technical Paper
  • 2019-28-0061
Published 2019-10-11 by SAE International in United States
Inconel 625, nickel based alloy, is found in gas turbine blades, seals, rings, shafts, and turbine disks. On the other hand, the manufacturing of this alloy is challenging, mainly when machining processes are used due to excellent mechanical properties. Application of nanofluids in minimum quantity lubrication (MQL) shows gaining importance in the machining process, which is economical and eco-friendly. The principal objective of this investigational work is to study the influence of three types of nanofluids in the MQL turning of Inconel 625 nickel based alloys. The used nanofluids are multi-walled carbon nanotubes (CNT), alumina (Al2O3) and copper oxide (CUO) dispersed in vegetable oil. Taguchi-based L27 orthogonal array is used for the experimental design. The parameter optimization of design variables over response is carried out by the use of Taguchi-based derringer's desirability function. The design variables are machining parameters (speed, feed), nanofluids (Al2O3, CNT, CUO), and three different weight percentage (0.1, 0.25, and 0.5 wt. %). The results showed that minimum values of surface roughness could be achieved at 0.10 wt. % of nanoparticles, CNT…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

CFD Simulation on Turbulent Forced Convection of Copper Oxide (CuO) -Water Nanofluids in a Horizontal Circular Pipe

John Deere India Pvt, Ltd.-Nitin Dewangan, Nitin Kattula
  • Technical Paper
  • 2019-28-0131
Published 2019-10-11 by SAE International in United States
The present study provides a detailed investigation on simulation of Copper oxide nanofluids in a simple horizontal circular pipe considering turbulent forced convection, with a constant heat flux boundary condition. The simulation is carried out using three different models available in fluent viz. Newtonian single phase model, Eulerian-mixture and Eulerian-Eulerian multiphase models. The Reynold number of the flow is varied along with volume concentration of nanoparticles varying form low to high. Nanofluids rheology is studied by considering standard k-ε two equation turbulence model with enhanced wall treatment considering appropriate wall y+ values. The effective temperature dependent thermo-physical properties for nanofluids were seized from the literatures. The results from the simulation clearly showed an increase in the heat transfer characteristics with the addition of nanoparticles compared to that of base fluid alone. Eulerian-Mixture model predicted the Nusselt number near to that of the experimental results from literature.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Electromagnetic Characteristic Comparison of Superconducting Synchronous Motor Characteristics for Electric Aircraft Propulsion Systems

IHI Corporation-Hitoshi Oyori
The University of Tokyo-Yutaka Terao, Yusuke Ishida, Hiroyuki Ohsaki
Published 2019-09-16 by SAE International in United States
This paper describes the comparison of electromagnetic characteristics of two different superconducting-motor structures for electrified aircraft propulsion systems. Future electrified aircraft demand higher output (over 16 kW/kg) and higher efficiency (> 98%) for their motors in comparison with current ones. To satisfy the demands, two kinds of superconducting motors are dealt in this study: one is partially superconducting motors (PSCMs), made of superconducting field coils and copper armature windings; the other is the fully superconducting motors (FSCMs) made of superconducting field/armature windings. They are cooled at 20 K with liquid hydrogen. We designed these two motors with finite element method to obtain the output density of 16-20 kW/kg for future electrified propulsion systems. We selected 3.0- and 5.0 MW superconducting motors, considering the application to aircraft for almost 180 passengers and 44 MW rated power for take-off. Also, we evaluated the motor weight using two kinds of cryostat materials: stainless steel (SUS) and fiber-reinforced plastic (FRP). The results show that the 5.0 MW PSCM using FRP achieved the output density of 16.9 kW/kg and the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Influence of Amount of Phenolic Resin on the Tribological Performance of Environment-Friendly Friction Materials

Indian Institute of Technology Delhi-Navnath Kalel, Jayashree Bijwe, Ashish Darpe
Published 2019-09-15 by SAE International in United States
The binder in friction materials (FMs) plays a very crucial role which binds all the ingredients firmly so that they can function the way they were supposed to do. The type and amount of binder, both are very critical for manipulating the desired performance properties, which mainly include friction and its sensitivity towards operating parameters, wear resistance, counter-face friendliness, noise, vibration etc. Although a lot is reported on the influence of types of resins on tribo-performance of FMs, hardly any paper pertains to paint this on a bigger canvas with more detailed understanding of the amount of resin in FMs on the performance properties.The present study addresses these aspects by developing brake-pads with identical composition but varying in amount (wt. %) of straight phenolic resins (6, 8, 10 and 12) by compensating the difference with barite, a space filler. The ingredients did not contain asbestos, Copper, Zinc, etc. and hence were environment friendly. Tribological performance of the composites was evaluated on a full-scale inertia brake dynamometer following JASO C406 test schedule. With increase in the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Acceleration Resistant HiK Heat Spreader

Aerospace & Defense Technology: September 2019

  • Magazine Article
  • 19AERP09_04
Published 2019-09-01 by SAE International in United States

As electronic technologies advance in defense and aerospace applications, heat fluxes are becoming larger and more centralized[1,2]. In order to meet the performance specifications of new technologies, thermal solutions must also advance. The push for more capable thermal technologies is evident with the U.S. Air Force Research Laboratory (AFRL) signing an agreement with private companies and contractors for the development of innovative vapor cooling technologies capable of handling high heat fluxes[2].

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

TERMINAL, LUG, CRIMP STYLE, COPPER, UNINSULATED, RING TONGUE, TIN WHISKER RESISTANT, TYPE I, CLASS I, FOR 150 °C TOTAL CONDUCTOR TEMPERATURE

AE-8C2 Terminating Devices and Tooling Committee
  • Aerospace Standard
  • AS7928/11D
  • Current
Published 2019-08-21 by SAE International in United States

Scope is unavailable.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Copper Wire, Bare, High Purity

AMS D Nonferrous Alloys Committee
  • Aerospace Material Specification
  • AMS4700E
  • Current
Published 2019-08-01 by SAE International in United States

This specification covers one type of copper in the form of wire.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

TERMINAL, LUG, CRIMP STYLE, COPPER, UNINSULATED, FLAG TONGUE, SIZES 22-10, TYPE I, CLASS I, FOR 150°C TOTAL CONDUCTOR TEMPERATURE

AE-8C2 Terminating Devices and Tooling Committee
  • Aerospace Standard
  • AS7928/15A
  • Current
Published 2019-07-08 by SAE International in United States
No Abstract Available.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

TERMINAL, LUG, CRIMP STYLE, COPPER, UNINSULATED, RING TONGUE, TYPE I, CLASS 1, FOR 175 °C OR 260 °C TOTAL CONDUCTOR TEMPERATURE

AE-8C2 Terminating Devices and Tooling Committee
  • Aerospace Standard
  • AS20659G
  • Current
Published 2019-07-08 by SAE International in United States
No Abstract Available.
This content contains downloadable datasets
Annotation ability available