Your Selections

Control systems
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Noise and vibration simulations method for electric hybrid tractor powertrain.

Tafe Motors and Tractors Limited-Ishwinder Pal Singh Sethi, Anand Shivajirao Patil
  • Technical Paper
  • 2019-28-2469
To be published on 2019-11-21 by SAE International in United States
Internal combustion (IC) engines have been serving as prime source of power in tractors, since late 19th Century. Over this period, there have been significant improvements in IC engine technology leading to increased power density, reduction in tailpipe emissions and refinement in powertrain noise of tractors. As the regulations governing tailpipe emissions continue to be more stringent, original equipment manufacturers also have initiated work on innovative approaches such as diesel-electric hybrid powertrains to ensure compliance with new norms. However, introduction of such technologies may impact customer’s auditory, vibratory and drivability perceptions. Absence of conventional IC engine noise, association of electric whistle and whine, torque changes with activation/de-activation of motors and transmission behavior under transient conditions may result in new NVH issues in hybrid electric vehicles. The following paper addresses these concerns and introduces a multi-physics simulation model to investigate and mitigate these effects. The multi physics simulation model presented in this paper incorporates the multi-disciplinary domain of internal combustion engine thermodynamics, electric components, mechanical systems, control systems and the vehicle response.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Usage of Telematics Data in Advance Powertrain Development

Honda Cars India Pvt Ltd.-Shubham Garg, Anurag Anurag, Mohit Singhal, Isao Chiba, Kouji Okayasu
  • Technical Paper
  • 2019-28-2438
To be published on 2019-11-21 by SAE International in United States
To achieve accuracy in model development with large scale customer actual data in low cost and limited time usage of telematics system was adopted. Honda’s OBD II diagnostic connecting device Honda Connect was used as transceiver for this telematics system which was used as an accessory in Honda vehicles. Data collected with this device with large sample size and regional diversity across India was used in product development for Honda System. Control system development for BSVI vehicles, Idle start stop hardware specificaton selection and Battery electric vehicle target range study was done with Honda Connect Data.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Self-Intelligent Traffic Light Control System based on Traffic Environment using Machine Learning

Maharaja Agrasen Institute of Technology-Ananya Bansal, Shubham Upadhyaya
  • Technical Paper
  • 2019-28-2459
To be published on 2019-11-21 by SAE International in United States
In this paper, we will detect and track vehicles on a video stream and count those going through a defined line and to ultimately give an idea of what the real-time on street situation is across the road network. Our major objective is to optimize the delay in transit of vehicles in odd hours of the day. It uses YOLO object detection technique to detect objects on each of the video frames And SORT (Simple Online and Realtime Tracking algorithm) to track those objects over different frames. Once the objects are detected and tracked over different frames a simple mathematical calculation is applied to count the intersections between the vehicles previous and current frame positions with a defined line. At present, the traffic control systems in India, lack intelligence and act as an open-loop control system, with no feedback or sensing network. Present technologies use Inductive loops and sensors to detect the number of vehicles passing by. This is a very inefficient and expensive way to make traffic lights adaptive. Using a simple CCTV camera…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Electric Vehicle Controller by using MBD approach

Maruti Suzuki India, Ltd.-Komal Behl
  • Technical Paper
  • 2019-28-2494
To be published on 2019-11-21 by SAE International in United States
The automobile industry is moving towards electrification of Vehicle to remove the exhaust gas emissions. A project was undertaken to develop Electric Vehicle control system from concept to vehicle trials in less than a year. The complete development cycle of an electronic controller required to be compressed to prepare mule electric vehicle within timeline. Agile methodology has been used for this project instead of waterfall as other control systems were in developing stage; system requirements were changing frequently. This paper presents the electric vehicle control unit development with agile methodology using model based development (MBD) in MATLAB and Simulink environment. The project flow consists of major phases like design of electrical architecture, system requirements specification, selection and setting up the simulation platform, EVCU strategy development, testing on Model in Loop (MIL)/ Hardware in Loop (HIL), vehicle trials. The electrical architecture of EV has been designed in Simulink for depicting the interfaces of EVCU with different sensors, battery management subsystem (BMS), and charging subsystem including both AC and DC, motor subsystem, relays and actuators. The strategies…
new

Nonlinear Iterative Optimization Process for Multichannel Remote Parameter Control

SAE International Journal of Vehicle Dynamics, Stability, and NVH

China-Yong Zhang
Shanghai Jiao Tong University, China-Meng Li
  • Journal Article
  • 10-03-03-0015
Published 2019-10-14 by SAE International in United States
In this article, compared with traditional Remote Parameter Control (RPC), the iterative process is improved based on linear transfer function (TF) estimation of the nonlinear dynamic system. In the improved RPC, the iteration coefficient is designed according to the convergence condition of the nonlinear iterative process, so that the convergence level, convergence speed, and iteration stability could be improved. The difference between the traditional and the improved RPC iterative process is discussed, the RPC iterative process of the nonlinear system is analyzed, and channel decoupling for Multi-Input Multi-Output (MIMO) system based on eigen-decomposition of the system TF and linear TF estimation is introduced. It assumes that the eigenvector matrix of the system TF remains the same, and the linear TF in the iterative process is estimated and updated, which is used for iterative calculation. The method for iteration coefficient is designed according to the nonlinear system convergence condition of the iterative process. The whole theory is verified on a two-channel electrohydraulic servo system and a lightweight motorcycle. The optimization strategy can be used not only…
new

Drone Control System

  • Magazine Article
  • TBMG-35357
Published 2019-10-01 by Tech Briefs Media Group in United States

Kongsberg Geospatial Ottawa, Ontario, Canada 1-800-267-7330

new

Lightweight Sensing and Control System for Unmanned Aerial Vehicle Monitoring

  • Magazine Article
  • TBMG-35273
Published 2019-10-01 by Tech Briefs Media Group in United States

A new sensing and control system for unmanned aerial vehicles (UAVs) allows for semi-autonomous flight. Pilots need not leave the ground to conduct routine monitoring and surveillance quickly and cost-effectively. Such systems are particularly useful during long flight segments or over remote locations, or for scientific applications such as atmospheric monitoring or crop monitoring, which might require long and repeated sampling in a specific pattern. The small, lightweight technology can be quickly adapted to a specific configuration.

new

Software Applications for the Control and Management of the Amine Swingbed Experiment

  • Magazine Article
  • TBMG-35265
Published 2019-10-01 by Tech Briefs Media Group in United States

The Swingbed software applications provide for the control, command, fault detection, fault recovery, and telemetry monitoring aspects of the Amine Swingbed experiment. These software components are the Swingbed Loader Computer Software Configuration Item (CSCI), the Swingbed Control Module, and the Swingbed Ground Controller applications. As a whole, the Amine Swingbed experiment provides a means for investigating the removal of carbon dioxide from the International Space Station (ISS) crews’ breathing environment via a system of a vacuum-regenerated amine pressure swing absorption reaction beds. Its development and deployment aboard the ISS as an Express Rack pay-load serves to advance the use of the amine-based pressure swing absorption technology towards a level of technology readiness suitable for use in future space transportation systems, where the use of consumables for the removal of carbon dioxide from the breathable environment is not desirable.

new

How to Use Rotary Encoders to Quickly Convert Mechanical Rotation into Digital Signals

  • Magazine Article
  • TBMG-35291
Published 2019-10-01 by Tech Briefs Media Group in United States

In the digital age, the measurement of rotation of a mechanical shaft on a motor or a rotating instrument knob needs to be done quickly and efficiently. Analog methods such as potentiometers and rotating switches are being replaced by rotary encoders that directly digitize rotary movement, but designers need to be able to appreciate the differences among various encoder types and accurately interpret their digital outputs.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Novel Metaheuristic for Adaptive Signal Timing Optimization Considering Emergency Vehicle Preemption and Tram Priority

SAE International Journal of Transportation Safety

Universite Mohammed V de Rabat Ecole Mohammadia d'Ingenieurs, Morocco-Maryam Alami Chentoufi, Rachid Ellaia
  • Journal Article
  • 09-07-02-0007
Published 2019-09-24 by SAE International in United States
In this article, a novel hybrid metaheuristic based on passing vehicle search (PVS) cultural algorithm (CA) is proposed. This contribution has a twofold aim: First is to present the new hybrid PVS-CA. Second is to prove the effectiveness of the proposed algorithm for adaptive signal timing optimization. For this, a system that can adapt efficiently to the real-time traffic situation based on priority signal control is developed. Hence, Transit Signal Priority (TSP) techniques have been used to adjust signal phasing in order to serve emergency vehicles (EVs) and manage the tram priority in a coordinated tram intersection. The system used in this study provides cyclic signal operation based on a real-time control approach, including an optimization process and a database to manage the sensor data from detectors for real-time predictions of EV and tram arrival time. Then, a simulation model is developed using Arena Simulation Software to evaluate best timing plans at the intersection.
This content contains downloadable datasets
Annotation ability available