Your Selections

Computational fluid dynamics
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of wheel-housing on aerodynamic drag and effect on energy consumption on an electric bus body

ARAI Academy-Amitabh Das, Yash Jain
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2394
To be published on 2019-11-21 by SAE International in United States
Role of Wheel and underbody Aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a Bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption. Keywords: Wheel-housing, Drag Coefficient, CFD Simulation, Bus, Energy consumption
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modeling for collective effect of Muffler geometric modifications and blended microalgae fuel use on exhaust performance of a four-stroke diesel engine: A Computational Fluid Dynamics Approach

Lovely Professional University-Sumit Kanchan, Rajesh Choudhary, Chavagani Brahmaiah
University of Kashmir-Shahid Qayoom
  • Technical Paper
  • 2019-28-2377
To be published on 2019-11-21 by SAE International in United States
Engine performance significantly depends on the effective exhaust of the combustion gases from the muffler. With stricter BSVI norms more efficient measures has to be adopted to reduce the levels of exhaust emissions from the exhaust to the atmosphere. Muffler along with reducing the engine noise, is intended to control the back pressure as well. Back pressure change has significant effect on muffler temperature distribution which affects the NOx emission from the exhaust. Many research communications have been made to reduce the exhaust emissions like HC, CO and CO2 from the exhaust by using different generation biofuels as alternate fuel, yet they have confronted challenges in controlling the NOx content from exhaust. This work presents the combined effect of Muffler geometry modifications and blended microalgal fuel on exhaust performance with an aim to reduce NOx emission from the exhaust of a four-stroke engine. In this exertion, computational fluid dynamics model is developed to analyze the effect of muffler geometry modification on vital exhaust parameters of an engine. The engine is powered with blend of microalgae…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Fabrication of a Formula SAE Undertray

Colorado School of Mines-Jacob Thom, Bridger Armstrong, Robin Chow, Forrest Denham, Quinn Khosla, Luke La Rocque, John Oldland, Steven Ripple, Nicholas Sammons
  • Technical Paper
  • 2019-01-2596
To be published on 2019-10-22 by SAE International in United States
Aerodynamic packages can provide a significant performance benefit to Formula SAE cars, but design and development of a full aerodynamics package can be time-consuming and expensive. An undertray system can provide significant aerodynamic benefits at a lower cost than a full aerodynamics package with front and rear wings. To properly design and test an undertray, a robust program of computational fluid dynamics (CFD) analysis and verification is needed. CFD analysis can be challenging, especially for large external flow problems like that of a full car. Due to this difficulty, careful meshing and setup of simulations is necessary to ensure accurate results. Much like analysis, fabrication of an aerodynamics package for a Formula SAE car is difficult. Fiberglass and carbon fiber layup processes are commonly used, but are prone to a variety of issues, and can be costly and time-consuming. Therefore, a thorough layup schedule and a careful manufacturing process is necessary. Fiberglass and carbon fiber were chosen as materials for the undertray due to their low weight relative to strength. These materials are often difficult…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Tire Burst Test Methodology

A-5C Aircraft Tires Committee
  • Aerospace Standard
  • ARP6265
  • Current
Published 2019-10-17 by SAE International in United States
This document describes a recommended test procedure to assess the burst characteristics of tires used on 14CFR Part 25 or similar transport airplanes.
This content contains downloadable datasets
Annotation ability available
new

Engine Cylinder Head Thermal-Mechanical Fatigue Evaluation Technology and Platform Application

Jiangling Motor Company Limited, China-Xuwei Luo
Jiangling Motor Company, China-Xiaochun Zeng
  • Journal Article
  • 03-13-01-0008
Published 2019-10-14 by SAE International in United States
An in-cylinder combustion analysis and a computational fluid dynamics (CFD) coolant flow analysis were performed using AVL FIRE software, which provided the heat transfer boundary conditions (HTBCs) to the temperature field calculation of the cylinder head. Based on the measured material performance parameters such as stress-strain curve under different temperatures and E-N curve, creep, and oxidation data material performance, the cylinder head-gasket-cylinder block finite element analysis (FEA) was performed. According to the temperature field calculation results, the maximum temperature of the cylinder head is 200°C that is within the limit of ALU material. The temperature of the water is more than 21.1°C below the critical burnout point temperature. The high-cycle fatigue (HCF) and thermal-mechanical fatigue (TMF) analysis of the cylinder head were performed by FEMFAT software. The HCF safety coefficient and TMF life cycle of the cylinder head were calculated, which provided an important guidance for cylinder head structure design of a gasoline engine and diesel engine. The present article establishes a complete simulation and analysis process of cylinder head TMF. The fatigue assessment technology…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Predictive Tool to Evaluate Braking System Performance Using Thermo-Structural Finite Element Model

SAE International Journal of Passenger Cars - Mechanical Systems

Universiti Teknologi Malaysia, Malaysia-Wan Zaidi Wan Omar
University of Sciences and Technology of Oran, Algeria-Ali Belhocine
  • Journal Article
  • 06-12-03-0014
Published 2019-10-14 by SAE International in United States
The braking phenomenon is an aspect of vehicle stopping performance where with kinetic energy due to the speed of the vehicle is transformed into thermal energy produced by the brake disc and its pads. The heat must then be dissipated into the surrounding structure and into the airflow around the brake system. The thermal friction field during the braking phase between the disc and the brake pads can lead to excessive temperatures. In our work, we presented numerical modeling using ANSYS software adapted in the finite element method (FEM), to follow the evolution of the global temperatures for the two types of brake discs, full and ventilated disc during braking scenario. Also, numerical simulation of the transient thermal analysis and the static structural analysis were performed here sequentially, with coupled thermo-structural method. Numerical procedure of calculation relies on important steps such that Computational Fluid Dynamics (CFD) and thermal analysis have been well illustrated in three-dimensional form (3D), showing the effects of heat distribution over the brake disc. This CFD analysis helped us in the calculation…
This content contains downloadable datasets
Annotation ability available
new

Gasoline Particulate Filter Substrate Heterogeneity Effects on Its Performance

Combustion & Reaction Characterization Laboratory, USA Texas A&M Department of Mechanical Engineering, USA-Pengze Yang
Texas A&M Department of Mechanical Engineering, USA-Michael B. Pate
  • Journal Article
  • 03-13-01-0004
Published 2019-10-14 by SAE International in United States
Continuously tightening Particulate Matter (PM) and Particulate Number (PN) regulations make Gasoline Particulate Filters (GPFs) with high filtration efficiency and low pressure drop highly desirable as Gasoline Direct Injection (GDI) engines increase in market share. Due to packaging constraints, GPFs are often coated with three-way catalyst (TWC) materials to achieve four-way functionality. Therefore, it is critical to investigate the effects of various washcoating strategies on GPF performance. A three-dimensional (3D) Computational Fluid Dynamics (CFD) model, along with an analytical filtration model was created. A User Defined Function (UDF) was implemented to define the heterogeneous properties of the GPF wall due to washcoating or ash membrane application. The model demonstrated the ability to predict transient filtration efficiency and pressure drop of uncoated and washcoated GPFs. Simulation results showed the evenly coated GPF yielded the best performance compared to other washcoating profiles. The model-predicted results indicated that the sample GPF with a 2.6 g/L ash loading was able to achieve a balance between high initial filtration efficiency and low pressure drop.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Assessment of Numerical Cold Flow Testing of Gas Turbine Combustor through an Integrated Approach Using Rapid Prototyping and Water Tunnel

Indian Institute of Technology Madras-Ssheshan Pugazhendhi
SRM Institute of Science and Technology-Sundararaj Senthilkumar
Published 2019-10-11 by SAE International in United States
In the present work, it is aimed at developing an integrated approach for combustor modeling involving rapid prototyping and water tunnel testing to assess the cold flow numerical simulations; the physical model will be subjected to cold flow visualization and parametric studies and CFD analysis to demonstrate its capability for undergoing rigorous cold flow testing. A straight through annular combustors is chosen for the present study because of it has low pressure drop, less weight and used widely in modern day aviation engines.Numerical Analysis has been performed using ANSYS-FLUENT. Three dimensional RANS equations are solved using k-ɛ model for the Reynolds numbers ranging from 0.64 x 105-1.5 x 105 based on the annulus diameter. Post processing the results is done in terms of jet penetration, formation of recirculation zone, effective mixing, flow split and pressure drop for different cases. Physical combustor models are fabricated using Rapid prototyping with Poly Lactic Acid material and approximated 2D combustor model is used for capturing important flow patterns using high speed camera in 2D water tunnel, and for pressure…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Effect of Fender Coverage Angle on the Aerodynamic Drag of a Bicycle

Delhi Technological University-Vishesh Kashyap, B.B. Arora, Sourajit Bhattacharjee
Published 2019-10-11 by SAE International in United States
While riding cycles, cyclists usually experience an aerodynamic drag force. Over the years, there has been a global effort to reduce the aerodynamic drag of a cycle. Fenders affect the aerodynamic drag of a cycle to a large extent, and fender coverage has a pronounced effect on the same. In this article, various fender coverage angles, varying from 60° to 270°, were studied to predict the aerodynamic drag with the help of a validated CFD model in SolidWorks Flow Simulation. The model was based on the Favre-Averaged Navier-Stokes (FANS) equations solved using the k-ɛ model. It was predicted that aerodynamic drag coefficient reduced fender coverage angle up to 135°, and thereafter started increasing. Analyses were carried out at velocities of 6 m/s, 8 m/s and 10 m/s and the results were found to be similar, with a minimum aerodynamic drag coefficient at 135° occurring in all the cases under study. There was an observed optimum decrease in drag coefficient to the extent of 4.6%, 4.5% and 4.6% as compared to the bicycle without fenders for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

CFD Simulation on Turbulent Forced Convection of Copper Oxide (CuO) -Water Nanofluids in a Horizontal Circular Pipe

John Deere India Pvt, Ltd.-Nitin Dewangan, Nitin Kattula
Published 2019-10-11 by SAE International in United States
The present study provides a detailed investigation on simulation of Copper oxide nanofluids in a simple horizontal circular pipe considering turbulent forced convection, with a constant heat flux boundary condition. The simulation is carried out using three different models available in fluent viz. Newtonian single phase model, Eulerian-mixture and Eulerian-Eulerian multiphase models. The Reynold number of the flow is varied along with volume concentration of nanoparticles varying form low to high. Nanofluids rheology is studied by considering standard k-ε two equation turbulence model with enhanced wall treatment considering appropriate wall y+ values. The effective temperature dependent thermo-physical properties for nanofluids were seized from the literatures. The results from the simulation clearly showed an increase in the heat transfer characteristics with the addition of nanoparticles compared to that of base fluid alone. Eulerian-Mixture model predicted the Nusselt number near to that of the experimental results from literature.
This content contains downloadable datasets
Annotation ability available