Your Selections

Computational fluid dynamics
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

 

Hypersonic flow simulation towards space propulsion geometries

Universidade Da Beira Interior-Odelma Teixeira, Jose Pascoa
  • Technical Paper
  • 2019-01-1873
To be published on 2019-09-16 by SAE International in United States
With the actual tendency of space exploration, hypersonic flight have gain a significant relevance, taking the attention of many researchers over the world. This work aims to present a numerical tool to solve hypersonic gas dynamic flows for space propulsion geometries. This will be done by validating the code using two well-known hypersonic test cases, the double cone and the hollow cylinder flare. These test cases are part of NATO Research and Technology Organization Working Group 10 validation of hypersonic flight for laminar viscous-inviscid interactions. During the validation process several important flow features of hypersonic flow are captured and compared with available CFD and numerical data. Special attention is taken to the phenomenon of vibrational excitation of the molecules. Different vibrational non-equilibrium models are used and compared with the available data. The pressure and the heat flux along the surfaces are also analyzed. The CFD simulation is conducted using an open-source CDF solver for hypersonic flows using the OpenFOAM framework. The two-temperature CFD solver, employing central-upwind interpolation schemes of Kurganov, Noelle e Petrova, hy2Foam, is…
 

Impact of Internal Vortex Generator Length on Wing Aerodynamics

Delhi Technological University-B B Arora, Pranav Bahl, Sourajit Bhattacharjee, Vishesh Kashyap
  • Technical Paper
  • 2019-01-1892
To be published on 2019-09-16 by SAE International in United States
Flow separation is among the major causes of aerodynamic drag experience by wings. Vortex generators are regularly used as a means of flow separation control in wings, their use leading to delayed flow separation and drag reduction. A disadvantage of external vortex generators has been observed to be high momentum loss and inefficiency in vortex generation. Internal vortex generators minimize the penalty of momentum loss and generate vortices closer to the surface. In this paper, the impact of the length of internal vortex generators on the aerodynamic characteristics of a wing have been investigated. Internal vortex generators have been placed at 30% chord distance on the suction side of a NACA 0012 airfoil. Analysis is carried out using the Computational Fluid Dynamics software ANSYS Fluent. The length of the vortex has been varied between H and 5H, H being the thickness of the boundary layer, at air flow Reynolds Number between 1,000,000 and 5,000,000. An optimum length of vortex generators for drag reduction is hence obtained.
 

Numerical Analysis of a Cycloidal Rotor Under Diverse Operating Conditions and Altitudes

Universidade Da Beira Interior-Mehdi Habibnia Rami, Jose Pascoa
  • Technical Paper
  • 2019-01-1872
To be published on 2019-09-16 by SAE International in United States
The current paper deals with the numerical study of the downwash flowfield characteristics in a cycloidal rotor. In an aircraft equipped with this kind of thruster, the downwash flow plays significant role in different flight modes. The interaction of this downwash jet with ground in effective height levels is studied using CFD simulations. Several operating conditions like pitching oscillation angles, rotation speeds and height levels are all considered in this work. The results declare that close-ground operating states augments the efficiency of cyclorotor. The vertical and horizontal forces of a single blade is also analyzed in a complete cycloid in different operating conditions. A lead and lag in maximum and minimum extremes of force curves of a single blade cycloid is obtained while being subjected to different functional conditions. These results strongly assure that an active control of both pitching oscillation and rotation speed is essential in operating at the optimum desired state.
 

Aerodynamic Study of the Effect of Span of Internal Vortex Generators

Delhi Technological University-Pranav Bahl, B B Arora, Vishesh Kashyap, Sourajit Bhattacharjee
  • Technical Paper
  • 2019-01-1891
To be published on 2019-09-16 by SAE International in United States
Vortex generators are aerodynamic devices generally used to delay local air separation and stalling. Conventional vortex generators are external and located normal to the surface with a yaw angle against the flow. However, external vortex generators lead to high momentum loss in the boundary layer, producing inefficient vortices which separate from the surface. They hence do not reenergise the boundary layer to a large extent, in order to allow for delayed flow separation. In order to reduce this loss, internal vortex generators may be used. The effect of internal vortex generators has been investigated on a NACA 0012 airfoil using the Computational Fluid Dynamics software ANSYS Fluent. As the effect of a vortex on the boundary layer is inherently three-dimensional, the numerical analysis of an internal vortex generator is limited to a three-dimensional simulation of the flow. The aerodynamic impact of internal vortex generators at Reynolds Number between 1,000,000 and 5,000,000 has been studied and compared against external vortex generators. Further, a parametric study has been carried out by varying the span between vortex generators…
 
new

Optimizing Cooling Fan Power Consumption for Improving Diesel Engine Fuel Efficiency Using CFD Technique

Tafe Motors and Tractor Ltd., India-Ajay Nain
  • Journal Article
  • 03-12-04-0024
Published 2019-06-11 by SAE International in United States
Fan cooling system of an air-cooled diesel engine is optimized using 3D CFD numerical simulation approach. The main objective of this article is to increase engine fuel efficiency by reducing fan power consumption. It is achieved by optimizing airflow rates and flow distribution over the engine surfaces to keep the maximum temperature of engine oil and engine surfaces well within the lubrication and material limit, respectively, at the expense of lower fan power. Based on basic fan laws, a bigger fan consumes lesser power for the same airflow rate as compared to a smaller fan, provided both fans have similar efficiency. Flow analysis is also conducted with the engine head and block modeled as solid medium and fan cooling system as fluid domain. Reynolds-averaged Navier-Stokes turbulence (RANS) equations were solved to get the flow field inside the cooling system and on the engine liner fins. The Moving Reference Frame approach was used for simulating the rotation of a fan. Cowl geometry was modified for providing better guidance to flow over engine surfaces and to get…
 
new

Heat Transfer Enhancement in Stagnation Region of Aero-Engine Inlet Vanes due to Ejection Slot and Anisotropic Heat Conduction

AECC Commercial Aircraft Engine Co., Ltd-Kun Yang, Hongkui Zhou
Beihang University-Peng Ke, Jie Liu, Lukas Schaeflein
Published 2019-06-10 by SAE International in United States
Ice protection is important for aero-engine induction system, such as the inlet vanes. For the ice protection of such parts manufactured with low thermal conductivity polymer-based composite material, the combined heating method using interior jet impingement and exterior ejection film has certain advantages. The simulation model coupling CFD with solid heat conduction was developed and solved with the anisotropic thermal conductivities model to investigate the heat transfer enhancement in the stagnation region of aero-engine inlet vanes due to ejection slot and anisotropic heat conduction, which is related to the curved geometry, ejection slots and anisotropic heat conduction.The temperature distribution and heat flux ratio between the stagnation region on outside surface and the impingement region inside were calculated and analyzed for the configuration with different ejection angle and different materials. The results show that ejection slots and anisotropic heat conduction plays important roles of the heat transfer process. For the same ejection angles, the larger the thermal conductivity, the higher the temperature at stagnation point and the better ice protection. For the same material property, the…
Datasets icon
Annotation icon
 
new

An Ice Shedding Model for Rotating Components

ANSYS Inc.-Shezad Nilamdeen, Yue Zhang, Isik Ozcer, Guido S. Baruzzi
Published 2019-06-10 by SAE International in United States
A CFD simulation methodology is presented to evaluate the ice that sheds from rotating components. The shedding detection is handled by coupling the ice accretion and stress analysis solvers to periodically check for the propagation of crack fronts and possible detachment. A novel approach for crack propagation is highlighted where no change in mesh topology is required. The entire computation from flow to impingement, ice accretion and crack analysis only requires a single mesh. The accretion and stress module are validated individually with published data. The analysis is extended to demonstrate potential shedding scenarios on three complex industrially-relevant 3D cases: a helicopter blade, an engine fan blade and a turboprop propeller. The largest shed fragment will be analyzed in the context of FOD damage to neighboring aircraft/component surfaces.
Datasets icon
Annotation icon
 
new

Experimental and Computer Model Results for a Carbon Nanotubes Electrothermal De-Icing System

Embraer-Rodrigo Domingos, Gilberto Becker
Published 2019-06-10 by SAE International in United States
Results from a three-dimensional computer model of a Carbon Nanotubes (CNT) based de-icing system are compared to experimental data obtained at COLLINS-Ohio Icing Wind Tunnel (IWT). The experiments were performed using a prototype of a CNT based de-icing system installed in a section of a business jet horizontal tail. The 3D numerical analysis tools used in the comparisons are AIPAC [1] and CFD++. The former was derived from HASPAC, an anti-icing computer model developed at Wichita State University in 2010 [3, 9, 10]. AIPAC uses the finite volumes method for the solution of the icing problem on an airfoil leading edge (or other 3D surfaces) and relies on any CFD solver to obtain the external flow properties used as boundary conditions. AIPAC is capable of predicting 3D multi-step ice shapes under rime, glaze and mixed regimes, and can also deal with the complex dynamics of cyclic ice accretion, melting, and shedding present in the realm of aircraft electrothermal de-icing systems. The latter is the CFD solver selected to provide the external flow properties for the…
Datasets icon
Annotation icon
 
new

Frostwing Co-Operation in Aircraft Icing Research

Aalto University-Pekka Koivisto
Federal Aviation Administration (FAA)-Thomas Bond
Published 2019-06-10 by SAE International in United States
The aerodynamic effects of Cold Soaked Fuel Frost have become increasingly significant as airworthiness authorities have been asked to allow it during aircraft take-off. The Federal Aviation Administration and the Finnish Transport Safety Agency signed a Research Agreement in aircraft icing research in 2015 and started a research co-operation in frost formation studies, computational fluid dynamics for ground de/anti-icing fluids, and de/anti-icing fluids aerodynamic characteristics. The main effort has been so far on the formation and aerodynamic effects of CSFF. To investigate the effects, a generic high-lift common research wind tunnel model and DLR-F15 airfoil, representing the wing of a modern jet aircraft, was built including a wing tank cooling system. Real frost was generated on the wing in a wind tunnel test section and the frost thickness was measured with an Elcometer gauge. Frost surface geometry was measured with laser scanning and photogrammetry. The aerodynamic effect of the frost was studied in a simulated aircraft take-off sequence, in which the speed was accelerated to a typical rotation speed and the wing model was then…
Datasets icon
Annotation icon
 
new

Numerical Simulation of Ice Crystal Accretion Inside an Engine Core Stator

ANSYS Inc.-Shezad Nilamdeen, Vinod Singh Rao, David Switchenko, Jeyatharsan Selvanayagam, Isik Ozcer, Guido S. Baruzzi
Published 2019-06-10 by SAE International in United States
A CFD simulation methodology is presented to calculate blockage due to ice crystal icing of the IGV passages of a gas turbine engine. The computational domain consists of six components and includes the nacelle, the full bypass and the air induction section up to the second stage of the low-pressure compressor. The model is of a geared turbofan with a fan that rotates at 4,100 rpm and a low-pressure stage that rotates at 8,000 rpm. The flight conditions are based on a cruising speed of Mach 0.67 in Appendix-D icing conditions with an ice crystal content is 4.24 g/m3. Crystal bouncing, and re-entrainment is considered in the calculations, along with variable relative humidity and crystal melting due to warmer temperatures within the engine core. Total time of icing is set to 20 seconds. The CFD airflow and ice crystal simulations are performed on the full 6-stage domain. The initial icing calculation determines which stage will be chosen for a more comprehensive analysis. In this case the IGV passage was chosen for the detailed multi-shot analysis,…
Datasets icon
Annotation icon