Your Selections

Collision avoidance systems
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Traffic Display and Collision Avoidance Systems

S-7 Flight Deck Handling Qualities Stds for Trans Aircraft
  • Aerospace Standard
  • ARP4102/10B
  • Current
Published 2019-11-07 by SAE International in United States

This document presents criteria for flight deck controls and displays for Airborne Collision Avoidance Systems.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Study on Comprehensive Evaluation Index of Front Collision Hazard of Intelligent Vehicle

Beihang University-Deng Weiwen
Jilin Normal University-Sumin Zhang
Published 2019-11-04 by SAE International in United States
Collision avoidance technology is one of the key areas in the longitudinal safety research of intelligent vehicles. For the research of collision avoidance system, the existing methods usually use the evaluation index based on time interval or braking process to carry out risk assessment. In order to overcome the shortcomings of the formulas for describing the longitudinal hazard degree established in most studies, such as great differences, inconsistent standards and weak normalization, a comprehensive evaluation method for the longitudinal hazard in front-impact scenarios is established. This method takes into account both the analysis of time interval and braking process, and considers the non-linear variation of the longitudinal hazard degree with the real-time distance and speed of two vehicles. It can describe the longitudinal hazard degree of vehicles in dangerous traffic scenarios. Compared with the existing longitudinal hazard assessment methods, the effectiveness and universality of the pre-collision hazard assessment method proposed in this paper are demonstrated.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of Active Collision Avoidance Performance Based on Cooperative Regenerative Auxiliary Braking System

China Academy of Railway Sciences Corporation Limited-Zhongshi Zhang
Tsinghua University-Xiaohui Hou, Junzhi Zhang, Chengkun He
Published 2019-11-04 by SAE International in United States
Active collision avoidance can assist drivers to avoid longitudinal collision through active brake. Regenerative braking can improve the driving range and braking response speed. At this stage, conventional hydraulic braking system limits the implements of above technologies because of its poor performance of response speed and coordinated control. While the brake-by-wire system is a better actuator that can fulfill requirements of automotive electric and intelligent development due to its rapid response and flexible adjustment. However, the system control algorithm becomes more complicated with introduction of regenerative braking and active collision avoidance function, which is also the main problem solved in this paper. First, a new type of cooperative regenerative auxiliary braking system (CRABS) of intelligent electric vehicles, which integrates the functions of brake-by-wire, regenerative braking and active collision avoidance, is proposed, for purpose of analyzing the improvement of active collision avoidance performance after the introduction of regenerative braking. The design of the system focuses on the Electro Hydraulic Brake (EHB) unit, control strategy of active collision avoidance and brake force distribution. Then, modeling and simulation…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Rethinking ADAS materials

Automotive Engineering: September 2019

John Pedrotti is Marketing Business Manager, Mobility, SABIC-John Pedrotti
  • Magazine Article
  • 19AUTP09_03
Published 2019-09-01 by SAE International in United States

New specialized thermoplastics offer greater design freedom to improve sensor performance and packaging, at reduced cost.

Advanced driver assistance system (ADAS) technologies-including automatic emergency braking, collision avoidance, adaptive cruise control and parking assist-are quickly going mainstream. OEMs, regulators and consumers recognize their value in improving driving and preventing accidents. As a global market, ADAS is expected to grow at a CAGR of 19.0% through 2025, according to Grand View Research.

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

SAE International Journal of Passenger Cars - Electronic and Electrical Systems

Beihang University, China-Weiwen Deng
General Motors LLC, USA-Jinsong Wang
  • Journal Article
  • 07-12-01-0003
Published 2019-08-22 by SAE International in United States
Advanced driver-assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of the driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This article presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modelled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models. Subsequently, time to collision (TTC) is calculated in a strategy of employing collision detection at every predicted trajectory instance. For this purpose, safe areas via bounding boxes are applied on every vehicle, and Separating Axis Theorem (SAT) is applied for collision prediction…
Annotation ability available

How Miniaturized Distributed Modular Architecture Advances Avionics Design

  • Magazine Article
  • TBMG-34865
Published 2019-08-01 by Tech Briefs Media Group in United States

Most of today’s collision-avoidance, in-flight-entertainment (IFE), air-to-ground-communications, and other avionics systems employ electronics packaging based on the Aeronautics Radio INC (ARINC) 600 standard. Compared to the older ARINC 404 standard dating from the 1970s that defined “black box” enclosures and racks within aircraft, ARINC 600 specified a Modular Concept Unit (MCU) – the basic building block module for avionics. An ARINC 600 metal enclosure can hold up to 12 MCUs, allowing a lot of computing power to be placed in a centralized “box.” By making it possible to run numerous applications over a real-time network, ARINC 600 enabled “next generation” integrated modular avionics (IMA).

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Dynamic Local Trajectory Planning and Tracking Method for UGV Based on Optimal Algorithm

Chongqing University-Yangxin Sun, Zhenfei Zhan, Yudong Fang, Ling Zheng, Liuhui Wang, Gang Guo
Published 2019-04-02 by SAE International in United States
UGV (Unmanned Ground Vehicle) is gaining increasing amounts of attention from both industry and academic communities in recent years. Local trajectory planning is one of the most important parts of designing a UGV. However, there has been little research into local trajectory planning and tracking, and current research has not considered the dynamic of the surrounding environment. Therefore, we propose a dynamic local trajectory planning and tracking method for UGV driving on the highway in this paper. The method proposed in this paper can make the UGV travel from the navigation starting point to the navigation end point without collision on both straight and curve road. The key technology for this method is trajectory planning, trajectory tracking and trajectory update signal generation. Trajectory planning algorithm calculates a reference trajectory satisfying the demands of safety, comfort and traffic efficiency. A trajectory tracking controller based on model predictive control is used to calculate the control inputs to make the UGV travel along the reference trajectory. The trajectory update signal is generated when needed (e.g. there has a…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Cooperative Collision Avoidance in a Connected Vehicle Environment

Ohio State University-Sukru Yaren Gelbal, Sheng Zhu, Gokul Arvind Anantharaman, Bilin Aksun Guvenc, Levent Guvenc
Published 2019-04-02 by SAE International in United States
Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilities enable critical situational awareness. In some cases, these vehicle communication safety capabilities can overcome the shortcomings of other sensor safety capabilities because of external conditions such as 'No Line of Sight' (NLOS) or very harsh weather conditions. Connected vehicles will help cities and states reduce traffic congestion, improve fuel efficiency and improve the safety of the vehicles and pedestrians. On the road, cars will be able to communicate with one another, automatically transmitting data such as speed, position, and direction, and send alerts to each other if a crash seems imminent. The main focus of this paper is the implementation of Cooperative Collision Avoidance (CCA) for connected vehicles. It leverages the Vehicle to Everything (V2X) communication technology to create a real-time implementable collision avoidance algorithm along with decision-making for a vehicle that communicates with other vehicles. Four distinct collision risk environments are…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Study of the Performance of Automatic Emergency Braking (AEB) Systems Equipped on Passenger Vehicles for Model Years 2013 to 2018

30 Forensic Engineering-Djordje Miholjcic, Mark Fabbroni, Richard Robinson
Published 2019-04-02 by SAE International in United States
Over the past decade, manufacturers have introduced vehicles equipped with Automatic Emergency Braking (AEB) into the North American market. These vehicles have the capability to not only detect an impending collision and warn the driver, but also to initiate braking independent of the driver. The collision avoidance strategies used by the various manufacturers have not been studied extensively. In 2013, the Insurance Institute for Highway Safety (IIHS) began testing vehicles equipped with AEB in rear-end collision situations in order to issue their front crash prevention safety ratings for these vehicles. To date, over 180 vehicles from 31 manufactures spanning model years 2013 to 2018 have been tested. This paper presents an analysis of the data collected in these tests. The objective of the study was to assess the differences in performance and strategies used, at two different closing speeds, between manufacturers. The difference in strategies included differences in braking rates and timing of the onset of braking. With more vehicles being equipped with AEB systems each year, this study will be a valuable resource for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Naturalistic Driving Behavior Analysis under Typical Normal Cut-In Scenarios

SMVIC-Jianyong Cao, Feng Yu
Tongji University-Xuehan Ma, Zhixiong Ma, Xichan Zhu
Published 2019-04-02 by SAE International in United States
Cut-in scenarios are common and of potential risk in China but Advanced Driver Assistant System (ADAS) doesn’t work well under such scenarios. In order to improve the acceptance of ADAS, its reactions to Cut-in scenarios should meet driver’s driving habits and expectancy. Brake is considered as an express of risk and brake tendency in normal Cut-in situations needs more investigation. Under critical Cut-in scenarios, driver tends to brake hard to eliminate collision risk when cutting in vehicle right crossing lane. However, under less critical Cut-in scenarios, namely normal Cut-in scenarios, driver brakes in some cases and takes no brake maneuver in others. The time when driver initiated to brake was defined as key time. If driver had no brake maneuver, the time when cutting-in vehicle right crossed lane was defined as key time. This paper focuses on driver’s brake tendency at key time under normal Cut-in situations. Environment factors (for example, traffic condition and road type), cutting-in vehicle type and motion factors were considered as influence factors. To comprehensively take those factors into account, cluster…
This content contains downloadable datasets
Annotation ability available