Your Selections

Brake pads
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Vehicle Electrification on Brake Design

Maruti Suzuki India, Ltd.-Vipul Gupta
  • Technical Paper
  • 2019-28-2499
To be published on 2019-11-21 by SAE International in United States
Electric vehicles have come full circle from being primary vehicle type in 19th century (much before IC powered vehicles) to 21st century where major stake holders in mobility have announced plans towards vehicle electrification. Apart from battery & powertrain system, braking system is area which will undergo major changes because of vehicle electrification. But Why? Major keywords are regenerative braking, increased vehicle weight, no or insufficient vacuum from engine and silent powertrains. This paper tries to outline potential impact on hydraulic brake system & its component design for M1 and N1 category of four wheelers with advent of vehicle electrification. Needless to say extent of change will vary depending upon extent of electrification and extent of recuperation during regenerative braking. Extent of electrification depends upon whether vehicle is range extender type hybrid vehicle, plug in hybrid vehicle, battery electric vehicle, fuel cell vehicle etc. Extent of electrification defines in turn extent of recuperation possible, extent of increase in vehicle weight, availability of vacuum and NVH of powertrains. Extent of recuperation is constrained by motor generator…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

FABRICATION AND WEAR CHARACTERISTICS BASALT FIBER REINFORCED POLYPROPYLENE MATRIX COMPOSITES

Dhanalakshmi Srinivasan Institute of Technology-Krishnaraj M, Thirugnana Sambandha T, Arun R
Trichy Engineering College-Vaitheeswaran T
  • Technical Paper
  • 2019-28-2570
To be published on 2019-11-21 by SAE International in United States
Generally brake pads are manufacturing by use of asbestos materials, these materials are chemically harmful and toxic, affects human health. The present investigation fabricates polypropylene composites with mixing constant volume [5 Vol.%] of alumina nano particles and different volume percentages [0%, 5%, 10% & 15%] of basalt fibre by hand layup compression technique. The wear characteristics of polypropylene matrix composites were tested by dry sliding condition using pin on disc apparatus configuration with hardened steel counter-face at elevated temperature. The load was applied 30N to 70N with the interval of 20N and varying of sliding speed 300 rpm to 900rpm with the interval of 300rpm for the time period of 0-180 sec. The wear rate was decreases with addition of alumina nano particle and also increases the frictional force for the effect of basalt fibre content present in the composites. The co-efficient of friction was increases from 0.1 to 0.66 under normal loading condition.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Predictive Tool to Evaluate Braking System Performance Using Thermo-Structural Finite Element Model

SAE International Journal of Passenger Cars - Mechanical Systems

Universiti Teknologi Malaysia, Malaysia-Wan Zaidi Wan Omar
University of Sciences and Technology of Oran, Algeria-Ali Belhocine
  • Journal Article
  • 06-12-03-0014
Published 2019-10-14 by SAE International in United States
The braking phenomenon is an aspect of vehicle stopping performance where with kinetic energy due to the speed of the vehicle is transformed into thermal energy produced by the brake disc and its pads. The heat must then be dissipated into the surrounding structure and into the airflow around the brake system. The thermal friction field during the braking phase between the disc and the brake pads can lead to excessive temperatures. In our work, we presented numerical modeling using ANSYS software adapted in the finite element method (FEM), to follow the evolution of the global temperatures for the two types of brake discs, full and ventilated disc during braking scenario. Also, numerical simulation of the transient thermal analysis and the static structural analysis were performed here sequentially, with coupled thermo-structural method. Numerical procedure of calculation relies on important steps such that Computational Fluid Dynamics (CFD) and thermal analysis have been well illustrated in three-dimensional form (3D), showing the effects of heat distribution over the brake disc. This CFD analysis helped us in the calculation…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Fatigue Life Prediction of Heavy Duty Automobile’s Brake Drum through Coupled Thermo-Mechanical Analysis

Vellore Institute Of Technology Chenna-Krishnamoorthy Annamalai
Vellore Institute of Technology-Chooriyaparambil Damodaran Naiju
Published 2019-10-11 by SAE International in United States
The aim of this paper is to demonstrate the methodology to simulate the induced stresses/strains due to thermo-mechanical loading of automobile brake drum.. The brake drum undergoes mechanical load due to applied brake pressure and thermal load due to friction generated between brake pad and brake drum while brake is applied. This coupled thermo-mechanical loading affects the life of the brake drum as the stiffness of the brake drum is reduced. The conventional method of simulating this problem is done using Lagrangian discretization in which the load is applied and inertia effect due to angular velocity is applied to a drum at static condition. In contrast, in this paper Eulerian discretization is adopted for finite element analysis, in which drum brake model is discretized as spatially dependent that facilitates actual rotation of brake drum with simultaneous application of brake load resulting more precise simulation. A sequentially coupled transient thermo-mechanical analysis is carried out using ABAQUS 6.12 simulation tool to predict the induced stresses/strains and fatigue life of the brake drum.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Exploration of Dry Sliding Wear Behaviour of Sisal Fiber Reinforced Cashew Nut Shell Liquid and Epoxy Polymer Matrix Composite as an Alternative Friction Material in Automobiles

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Shanthosh Gopal, Tharunkumar Magudeeswaran, Ramamoorthi Rangasamy
Published 2019-10-11 by SAE International in United States
The brake pad is one of the foremost imperative parts of the vehicle. Due to the environmental requirement, natural materials were the alternate source for products manufacturing. The product composite made by using hot press techniques with mixing ingredients such as natural fiber (treated sisal), cashew nut filler, graphite and alumina with resin (cashew nut shell liquid - CNSL and epoxy). Two formulas and four samples of each set were composed by varying the resin type of CNSL and epoxy and prepared the test samples with attaining better hardness. The main intern of this proposed effort is to appraise the wear in dry sliding and performance of friction of the prepared composites. The composites are taken for tribo test by varying the load of 10,20,30,40 N and sliding distance of 1000, 2000 m respectively. Experiments were performed at stated process parametric conditions to record the responses. The result shows that the CNSL resin composites specific wear resistance and frictional coefficients are found better than epoxy resin composites. The addition of filler element cashew nut shell…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Influence of Differential Pad Wear on Low-Frequency and High-Frequency Brake Squeal

SKR Consulting Inc.-Seong K. Rhee
Technische Universitat Braunschweig-Johannes Otto, Georg-Peter Ostermeyer
Published 2019-09-15 by SAE International in United States
The NVH behavior of disc brakes in particular, is in the focus of research since a long time. Measurements at a chassis dynamometer show that brake pad wear has a significant influence on the occurrence of low- and high-frequency squealing [1]. It is suspected that high-frequency squealing is more likely to occur when the wear difference between the inner and outer brake pad is small. In the other case, if the differential wear rate between the inner and outer pads becomes higher, the prevalence of low-frequency squealing increases.In order to examine this hypothesis, this work focuses on a simplified model of a commercial brake system [2]. In a first step, the inner pad’s wear is iteratively increased, while the wear on the outer pad remains unaffected. In a second step, the coefficient of friction at the worn pad is iteratively increased to investigate the influence on the low and high-frequency squealing. With the aid of the Complex Eigenvalue Analysis (CEA), the real part of the eigenvalue is used as a quantification measure in order to…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Squeal Noise Improvement by High Damping & High Stiffness under Layer Material

ADVICS Co., Ltd.-Shusuke Suzuki
ADVICS North America, Inc.-Masato Nishioka, Leanne Johnson, Sean Rosalez
Published 2019-09-15 by SAE International in United States
The purpose of this research is to clarify how damping characteristics of Under Layer (hereafter “UL”) material in the brake pads (hereafter “PAD”) influences brake squeal noise performance. In this study, UL material structure and dynamic viscoelasticity, for two different types of UL formulations are investigated. In addition, PAD damping ratio and squeal noise performance for multiple UL formulations are verified. As a result, the raw material orientation is determined based on manufacturing method, and it causes the UL material’s anisotropic properties. Dynamic viscoelasticity are dependent on the direction in which they are measured. In particular, the loss modulus, which is the damping element of dynamic viscoelasticity, is higher in the direction of the raw material orientation for the high damping and high stiffness UL formulation. In addition, it was confirmed that this loss modulus in the direction of the raw material orientation is effective for bending vibration. In the verification, the study focuses on the PAD damping ratio and squeal noise performance in the 1st bending vibration of the PAD. It is clarified that…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Objective Method for Crack Detection in Brake Friction Material

Industrial Measurement Systems Inc.-Donald Yuhas, Carol Vorres
KBAutoSys America-Richard Kaatz
Published 2019-09-15 by SAE International in United States
Friction material manufacturing is a complex process where numerous raw materials are mixed, pressed, and cured to make brake pads. It is important to have a consistent manufacturing process that can produce a brake pad that satisfies the vehicle braking requirements. A basic and critical requirement for any brake pad is structural integrity with no internal cracks. In this work a series of processing changes were made to intentionally produce internal cracks in the friction material. Various pad crack detection methods were studied, and their advantages and disadvantages are discussed in detail. One of the crack detection methods used an ultrasonic measuring instrument which gives objective data in the form of calculated modulus of elasticity and signal loss. The details of the machine and how the measurements are obtained are discussed. The modulus calculation is also described. Additionally, random pads with and without cracks were selected and checked using subjective and objective crack detection methods. The comparison analysis is discussed, and authors were able to show the difference between cracked and non-cracked pads using several…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Study on the Optimum Reduction of Required Brake Fluid Level for Improvement of the High Speed Continuous Brake Distance

Hyundai Motor Company-Junggyu Kim, Kwang Yun Kim, Eue-sub So
Published 2019-09-15 by SAE International in United States
The high speed continuous braking distance assessment is the worst condition for thermal fades. This study was conducted to investigate the relationship between fade characteristic and friction materials & brake fluid amount for improving braking distance. So, we used the dynamometer to measure the friction coefficient, braking distance and required brake fluid amount. Through the measurements, the research was carried out as follows. First of all, we studied the influence of friction coefficient about different shapes (chamfer shape, area of the friction material, number of slots) on the same friction material. Secondly, we knew the effects of braking distance by the shape of the friction material. Through these two studies, the shape of the friction material favorable to the fade characteristics was derived. Finally, we measured the amount of required brake fluid in caliper after 10 consecutive braking cycles through Dynamometer. And then, we measured the amount of compression deformation and uneven wear of the friction material. It was found that the above two factors cause the increase the amount of required brake fluid. Through…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Benefits and Application Bandwidth of Phenolic Piston Material in Opposed Piston Calipers

General Motors LLC-David B. Antanaitis, Mark Riefe
SBHPP-Chris Ciechoski
Published 2019-09-15 by SAE International in United States
The use of reinforced phenolic composite material in application to hydraulic pistons for brake calipers has been well established in the industry - for sliding calipers (and certain fixed calipers with high piston length to diameter ratios). For decades, customers have enjoyed lower brake fluid temperatures, mass savings, improved corrosion resistance, and smoother brake operation (less judder). However, some persistent concerns remain about the use of phenolic materials for opposed piston calipers. The present work explores two key questions about phenolic piston application in opposed piston calipers. Firstly, do opposed piston calipers see similar benefits? Do high performance aluminum bodied calipers, where the piston may no longer be a dominant heat flow path into the fluid (due to a large amount of conduction and cooling enabled by the housing), still enjoy fluid temperature reductions? Are there still benefits for judder with the much shorter length to diameter ratio the pistons have in these applications? Secondly - it is clear that the much shorter length to diameter ratio of the piston in opposed piston calipers will…
This content contains downloadable datasets
Annotation ability available