Your Selections

Airframes
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Optimization of Automated Airframe Assembly Process on Example of A350 S19 Splice Joint

Airbus-Elodie Bonhomme, Pedro Montero-Sanjuan
Peter the Great St. Petersburg Polytechnic University-Sergey Lupuleac, Julia Shinder, Maria Churilova, Nadezhda Zaitseva, Valeriia Khashba
  • Technical Paper
  • 2019-01-1882
To be published on 2019-09-16 by SAE International in United States
The paper presents the numerical approach to simulation and optimization of A350 S19 splice assembly process. The main goal is to reduce the number of installed temporary fasteners while preventing the gap between parts from opening during drilling stage. The numerical approach includes computation of residual gaps between parts, optimization of fastener pattern and validation of obtained solution on input data generated on the base of available measurements. The problem is solved with ASRP (Assembly Simulation of Riveting Process) software. The described methodology is applied to the optimization of the robotized assembly process for A350 S19 section.
 

New Technologies for Airframe Structural Assemblies

LISI Aerospace-Mehdi Dahane
  • Technical Paper
  • 2019-01-1915
To be published on 2019-09-16 by SAE International in United States
With air traffic demand constantly increasing and several years of aircraft production in their backlog, major aircraft manufacturers are now shifting their focus toward improving assembly process efficiency. One of the most promising solutions, known as “One Side Assembly”, aims to perform the whole assembly sequence from one side of the structure (drilling, temporary fastener installation and removal, blind fastener installation, assembly control) and with a high level of integrated automation. Investments in robotic equipment, automation engineering and innovation are very active and automation capabilities have already increased a lot in the aerospace industry. As an example, drilling operations for large dimensions airframe are clearly moving from manual to automated. However, despite more and more clever and sophisticated robotics, the use of historical fasteners with two side installation method remains a strong limitation to innovative automated assembly sequences. A blind fastener which can provide the same mechanical characteristics than current structural fasteners, while providing automation friendly features and meeting cost objectives is a real “must have” for assembly process efficiency improvements. It is also full…
 

Landing Gear Integration into Aircraft Structure in Early Design Stage

Bauhaus Luftfahrt EV-Ulrich Kling, Mirko Hornung
  • Technical Paper
  • 2019-01-1890
To be published on 2019-09-16 by SAE International in United States
The demanded development towards various emission reduction goals set up by several institutions forces the aerospace industry to think about new technologies and alternative aircraft configurations. With these alternative aircraft concepts, the landing gear layout is also affected. Turbofan engines with very high bypass ratios could increase the diameter of the nacelles extensively. In this case, mounting the engines above the wing could be a possible arrangement to avoid an exceedingly long landing gear. Thus, the landing gear could be shortened and eventually mounted at the fuselage instead of the wings. Other technologies such as high aspect ratio wings have an influence on the landing gear integration as well. To assess the difference, especially in weight, between the conventional landing gear configuration and alternative layouts a method is developed based on preliminary structural designs of the different aircraft components, namely landing gear, wing and fuselage. Simplified parametric finite element structural models for the different components are introduced. These models are used to investigate different aircraft configurations with special regard on the landing gear integration. The…
 

Simulation of Aircraft Assembly via ASRP Software

Airbus-Elodie Bonhomme
Peter the Great St. Petersburg Polytechnic University-Nadezhda Zaitseva, Tatiana Pogarskaia, Olga Minevich, Julia Shinder
  • Technical Paper
  • 2019-01-1887
To be published on 2019-09-16 by SAE International in United States
ASRP (Assembly Simulation of Riveting Process) software is a special tool for modelling assembly process for large scale airframe parts. On the base of variation simulation, ASRP provides a convenient way to analyze, verify and optimize the arrangement of temporary fasteners. During the airframe assembly process certain criteria on the residual gap between parts must be fulfilled. The numerical approach realized in ASRP allows one to evaluate the quality of contact on every stage of the assembly process and solve verification and optimization problems for temporary fastener patterns. The paper is devoted to description of several specialized approaches that combine statistical analysis of measured data and numerical simulation using high-performance computing for optimization of fastener patterns, calculation of forces in fasteners needed to close initial gaps and identification of hazardous areas in junction regions.
 
new

Bearing, Roller, Rod End, External Thread, Self0Aligning, Anti-Friction, Airframe, Heavy Duty, Type I, -67° to 350 °F, Sealed

ACBG Rolling Element Bearing Committee
  • Aerospace Standard
  • AS21223B
  • Current
Published 2019-08-12 by SAE International in United States

Scope is unavailable.

 
new

Bearing, Roller, Rod End, Internal Thread, Self-Aligning, Anti-Friction, Airframe, Heavy Duty, Type II, -67° to 350 °F, Sealed

ACBG Rolling Element Bearing Committee
  • Aerospace Standard
  • AS21220C
  • Current
Published 2019-08-12 by SAE International in United States

Scope is unavailable.

 
new

Bearing, Ball, Airframe, Anti-Friction, Extra Light Duty, Precision Corrosion Resistant Nitrogen Steel (Cren)

ACBG Rolling Element Bearing Committee
  • Aerospace Standard
  • AS21428/1B
  • Current
Published 2019-08-08 by SAE International in United States

Scope is unavailable.

 
new

BEARING, BALL, AIRFRAME, ANTIFRICTION, INTERMEDIATE DUTY

ACBG Rolling Element Bearing Committee
  • Aerospace Standard
  • AS27649E
  • Current
Published 2019-07-09 by SAE International in United States

Scope is unavailable.

 

Bearing, Roller, Rod End, External Thread, Self-Aligning, Anti-Friction, Airframe, Heavy Duty, Type I, -67° to 350°F, Sealed

ACBG Rolling Element Bearing Committee
  • Aerospace Standard
  • AS21221B
  • Current
Published 2019-06-11 by SAE International in United States

Scope is unavailable.

 

Machining Titanium Aero-Frames

  • Magazine Article
  • TBMG-34543
Published 2019-06-01 by Tech Briefs Media Group in United States

The rise of titanium for aerospace applications has been well documented in recent years. Equally, the challenges associated with the efficient, productive and high-quality machining of this popular material, have also been a topic of debate and scrutiny. Of course, every machine shop wants optimized performance from its cutters when milling titanium, but this can prove less than straightforward without the right technology and know-how in place. Today, however, thanks to a breakthrough in this area, things are beginning to change.