Your Selections

Aerodynamics
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of wheel-housing on aerodynamic drag and effect on energy consumption on an electric bus body

ARAI Academy-Amitabh Das, Yash Jain
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2394
To be published on 2019-11-21 by SAE International in United States
Role of Wheel and underbody Aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a Bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption. Keywords: Wheel-housing, Drag Coefficient, CFD Simulation, Bus, Energy consumption
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aerodynamic analysis of electric passenger car using wind turbine concept at front end

ARAI Academy-Snehil Mendiratta, Sugat Sharma
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2396
To be published on 2019-11-21 by SAE International in United States
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9% .
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aerodynamic analysis of commercial vehicle using active vortex generators concept

ARAI-Kamalkishore Vora
ARAI ACADEMY, PUNE-Saurabh Jayant kulkarni
  • Technical Paper
  • 2019-28-2409
To be published on 2019-11-21 by SAE International in United States
Any physical body being propelled through the air has drag associated with it. Drag will be created on the surface of the vehicle due to the flow separation at the rear end. In aerodynamics the flow separation can often result in increased drag particularly pressure drag, to delay the flow separation, the vortex generators are used on the roof end of the vehicle just before the point of flow separation. The objective of this project is to perform aerodynamic analysis of commercial vehicle using active vortex generators concept. First, the aerodynamic analysis of a baseline commercial vehicle model is performed and same is validated with the scaled model by using a wind tunnel test. Further analysis has been done by using active vortex generators concept with variation of angle of attacks for vehicle speed of 50, 70, 90 kmph. Also, analysis has been carried out for six different yaw angles. The simulation is carried out with the use of ANSYS Fluent. The simulation result shows the significant drag coefficient reduction of the commercial vehicle with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Analysis and Aerodynamic Stability on Design of Low cost and Economical Monocopter

UG Scholar-Harshil BHANDARI
  • Technical Paper
  • 2019-28-2523
To be published on 2019-11-21 by SAE International in United States
Most recent or all developments in the field of small UAV’s seem to use Quadcopters. It’s a valued commenting that a quadcopter is a smaller amount stable than a similar regular chopper and is additionally less economical. A Quadcopter UAV’s with four propellers is always a major concern to the society when brings to its stability as its major factor. To design and analyze the use of one propeller monocopter is the main objective of this paper. Wacky Whirler technology used here to demonstrate the passage of the monocopter. It is a single propeller powered with a coreless motor which is a modern enhancement in the UAV. It is based on the All Rotating monocopter theory. In the proposed system, controller based on IOT can be used which will be helpful in monitoring and processing the microdrone status. These forms of style have several potential applications in surveillance and agriculture; there are several eventualities wherever it's tempting for the stable UAV to be able to travel safely to long distances and hover for extended periods of time.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aerodynamic analysis of race car using active wing concept.

ARAI Academy-Prakash P Bhanushali
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2395
To be published on 2019-11-21 by SAE International in United States
In high speed race cars, aerodynamics is an important aspect for determining performance and stability of vehicle. It is mainly influenced by front and rear wings. Active aerodynamics consist of any type of movable wing element that change their position based on operating conditions of the vehicle to have better performance and handling. In this work, front and rear wings are designed for race car prototype of race car. The high down force aerofoil profiles have been used for design of front and rear wing. The first aerodynamic analysis has been performed on baseline model without wings using CFD tool. For investigation, parameters considered are angle of attack in the range of 0-18˚ for front as well as rear wing at different test speeds of 60, 80, 100 and 120 kmph. The simulation is carried out by using ANSYS Fluent. The simulation results show significant improvement in vehicle performance and handling parameters. To validate the results, a scaled model prototype is manufactured and tested in wind tunnel. Keywords: Active aerodynamics, wing, angle of attack, racecar.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aerodynamic Analysis of a Passenger Car to Reduce Drag Using Active Grill Shutter and Active Air Dam

ARAI Academy-Raghav Tandon
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2408
To be published on 2019-11-21 by SAE International in United States
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The optimized model is then validated for a scaled-down prototype in a wind tunnel at 80kmph. Vehicle has been modelled using SolidWorks and the simulation has been carried out using ANSYS Fluent. The result shows a significant drag reduction of 12.23% using active grill shutters and air dams.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Winglet Design and Analysis for Cessna 152 - A Numerical Study

SRM Institute of Science and Technology-Vivek Saini, Nagarajan Sunil Bhargav, Yallur Mohiddinsha, Sundararaj Senthilkumar
  • Technical Paper
  • 2019-28-0035
To be published on 2019-10-11 by SAE International in United States
During flight an emergent circulatory flow pattern named vortex is observed at wing tips producing induced drag. An approach to reduce this effect is by implementing winglets. Winglets are small wing-like lifting surfaces, fitted at the tip of some wings, usually with the objective of decreasing trailing vortex drag and thereby increasing the aerodynamic efficiency of the wing. The aim of the project is to design and analyze the effect of winglets for Cessna 152 by varying the cant angle and sweep angle. This model has been selected since it provides a good choice for Pilots first airplane. A baseline wing model was designed in CATIA V5, correspondingly wings with winglet models were designed with a fixed taper ratio of 0.2 and different cant and sweep angles. The lift to drag ratio is evaluated at different angles of attack by varying winglet design parameters. Different wing configurations with various Cant and Sweep angles were analyzed at sea level conditions using K-ω SST turbulent model in ANSYS FLUENT and best winglet with desired characteristics for optimum…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of Light Weight Spoiler for Efficient Aerodynamic Performance of a Vehicle

Mahindra & Mahindra, Ltd.-Praveen Kumar, Aditya Pandey, Vivek KV Shenoy, BalaChandar R, Ayan Chakraborty
  • Technical Paper
  • 2019-28-0003
To be published on 2019-10-11 by SAE International in United States
The spoiler is functional as well as aesthetic part fitted on the vehicles to improve the vehicle aerodynamic performance and better aesthetic appeal. The improvement of aerodynamics performance of the vehicle at higher speeds is achieved by reducing the overall vehicle coefficient of drag. This helps in better handling and improved fuel efficiency of the vehicle thus contributing to development of greener vehicle.In this project, our main focus is to reduce overall vehicle coefficient of drag, Design a light weight spoiler and improve the vehicle aesthetic appearance.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aerodynamic Drag Reduction of an Intercity Bus through Surface Modifications - A Numerical Simulation

Mahindra & Mahindra, Ltd.-Mathialagan Velshankar
SRM Institute of Science and Technology-Sundararaj Senthilkumar, Budda Thiagarajan Kannan
  • Technical Paper
  • 2019-28-0045
To be published on 2019-10-11 by SAE International in United States
The maximum power produced by the Engine is utilized in overcoming the Aerodynamic resistance while the remaining has been used to overcome rolling and climbing resistance. Increasing emission and performance demands paves way for advanced technologies to improve fuel efficiency. One such way of increasing the fuel efficiency is to reduce the aerodynamic drag of the vehicle. Buses emerged as the common choice of transport for people in India. By improving the aerodynamic drag of the Buses, the diesel consumption of a vehicle can be reduced by nearly about 10% without any upgradation of the existing engine. Though 60 to 70 % of pressure loads act on the frontal surface area of the buses, the most common techniques of reducing the drag in buses includes streamlining of the surfaces, minimizing underbody losses, reduced frontal area, pressure difference between the front & rear area and minimizing of flow separation & wake regions. As city buses won’t have cargo storage constraints roof optimization can be done to reduce the drag coefficient value. A base model of the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Increase of Compressor Performance through the Use of Microstructures

Bionic Surface Technologies GmbH-Mikel Garcia de Albeniz, Peter Adrian Leitl
RINA-Emiliano Costa, Stefano Barberis
  • Technical Paper
  • 2019-24-0239
To be published on 2019-10-07 by SAE International in United States
This paper describes how turbomachines can be optimized by simulating the effect of micro- and nanostructures suitably created over the shapes of their constituting components in order to increase the efficiency of the whole mechanical system. These structures, called riblets, consist of tiny streamwise grooved surfaces which reduce the drag in the turbulent boundary layer. Theoretical, numerical and experimental experiences give a first estimation of the impact of riblets in industrial compressors. In this case, the riblet structures reduce the aerodynamic shear stress losses. The areas of higher interest are the diffusor and the volute. It is there where the higher losses happen. The optimal size, position and effect on performance is going to be analysed. The use of such an effective numerical means may give benefits in terms of efficiency increase as well as of CO2 and noise emission reduction and, for these reasons, it also has a positive economical and societal impact in relation to mobility. The presented activities were performed in the Framework of the ReSISTant project, which was co-financed by the…