Your Selections

Additive manufacturing
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

LIGHT WEIGHTING OF ADDITIVE MANUFACTURED PARTS FOR AUTOMOTIVE PRODUCTION APPLICATIONS THROUGH TOPOLOGY OPTIMIZATION TECHNIQUES

General Motors Technical Center India-Abhijith Naik, T Sujan, Suraj Desai, Saravanakumar Shanmugam
  • Technical Paper
  • 2019-28-2544
To be published on 2019-11-21 by SAE International in United States
Rapidly enhancing engineering techniques to manufacture components in quick turnaround time have gained importance in recent time. Manufacturing strategies like Additive Manufacturing (AM) are a key enabler for achieving them. Unlike traditional manufacturing techniques such as injection molding, casting etc., AM unites advanced materials, machines, and software which will be critical for Industry 4.0. Successful application of AM involves a specific combination and understanding of these three key elements. In this paper the AM approach used is Fused Deposition Modelling (FDM). Since material costs contribute to 60% of the overall FDM costs, it becomes a necessity to optimize the material consumption of the produced parts. This paper reports case studies of 3D printed parts used in an Automobile plant’s production aids, which utilize computational methods(CAE), topology optimization and FDM constrains (build directions) to manufacture the part in the most optimal way. These methodologies were used to validate the current operating conditions, optimize the design, increase the stiffness of the original part and reduce the material costs. The newly optimized designs were verified by successfully passing…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Future hybrid Vehicles with advanced 48V electrified drive train technology to reduce Co2 emission

Mercedes-Benz R&D India Pvt Ltd.-Chandrakant Palve, Pushkaraj Tilak
  • Technical Paper
  • 2019-28-2487
To be published on 2019-11-21 by SAE International in United States
Future hybrid vehicles with advanced 48V electrified drive train technology to reduce CO2 emission. Chandrakant Palve* Pushkaraj Tilak * * Mercedes-Benz Research & Development India Pvt. Ltd. Bangalore. India. Key Words: 48V, CO2, P3 Hybrid, Electrified powertrain, AMT, emission, shift comfort, motor Research and/or Engineering Questions/Objective Global automotive industry is putting effort in moving from conventional powertrain technology to hybrid & electric powertrains. This efforts plays a vital role to achieve cleaner environment, improved performance, reduced fossil-fuel dependency, low noise for meeting regulatory & customer requirements. Automotive industry is facing a challenge of meeting stringent CO2 emission targets of 95g & 175g per kilometer for passenger cars & light commercial vehicles respectively. 48V is an important stepping stone in this direction. By taking motivation from this strategic challenge, advanced 48V P3 electrified powertrain technology has been proposed. The objective of this research is a novel electrified powertrain which offers Dual Clutch Transmission (DCT) level of shift comfort in combine with CO2 benefit without additional cost and weight penalty. Methodology The present study describes a unique…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

ENHANCE STRENGTH, ACCURACY AND PRECISION OF THE 3D PRINTED ASSEMBLY AID GAUGES

General Motors Technical Center India-Ramesh Kavalur, Raghavendra Rao
  • Technical Paper
  • 2019-28-2568
To be published on 2019-11-21 by SAE International in United States
ENHANCE STRENGTH, ACCURACY AND PRECISION OF THE 3D PRINTED ASSEMBLY AID GAUGES Ramesh Kavalur1, Raghavendra Rao 1 1 Body in White, Manufacturing Engineering, General Motors Technical Centre India Pvt. Ltd, India, Keywords - Additive manufacturing, assembly aid gauges, 3D printer. Research Objective - Automotive manufacturing impressively implementing 3D printed jigs and fixtures. Traditional manufacturing of metal assembly aid gauges have limitations such as lead time and causes dent and rough marks on the outer panel of the body. On the other hand, 3D printed jigs and fixtures, demands more time (depends on complexity), have low level of precision and they offer lower strength. It is observed that this occurs because of the inefficient design and manufacturing without understanding the functionality and capability of the 3D printer. The primary objective of this study is to examine, design & develop 3D printed jigs and fixture to optimize the product, achieve required precision and functionality with improvement in the strength of the product. Methodology - In order to examine, detail examination of existing 3D printed part were studied.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of Additive Manufactured Thermoplastic Component as FMVSS 201U Countermeasure

General Motors Technical Center India-Swaroop Kavi
  • Technical Paper
  • 2019-28-2547
To be published on 2019-11-21 by SAE International in United States
Research and/or Engineering Questing/Objectives: Safety of the occupant in passenger cars is one of the regulatory requirements in many developed countries. This includes upper interior head impact load case of the unbelted occupant during crash (FMVSS 201U) as one of them. During a crash event the occupant head can collide with the interior parts of the vehicle, such as a headliner, pillar trim and other subsequent components in the loading direction. Injury on the head is quantified in terms of the Head Injury Criterion of a crash test dummy (HIC(d)) value which should be less than 1000 per standard. Several ways can be adopted to reduce the HIC(d) value. These include a change in the design of ribs in the safety plastic components, headliner profile change, use of countermeasure foam between headliner and the exterior sheet metal parts, or a combination of any of these to absorb the energy of impact. Recent developments in the field of manufacturing, such as the Additive Manufacturing (AM) method, have provided an opportunity to design and manufacture components with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Topology Optimized Design Methodology to Suit Additive Manufacturing Process

Cyient, Ltd.-Sai Deepika Vemula, B.Suman Naidu, Bassetti Chandrasheker, Krishna Mylapalli, Prithviraj Mondal, Lasheer Shareef Md
  • Technical Paper
  • 2019-01-2597
Published 2019-10-22 by SAE International in United States
The selection of component material and design is an important topic in the manufacturing industry to produce sustainable and competitive products. The efficiency of the system is directly related to the weight of the components in that system. Topology optimization is an optimization method that employs mathematical tools to optimize material distribution in a part to be designed. It is the subfield of structural optimization process which is widely usable in the component development process. Conventional machining, which can be described as subtractive, imposes constraints on a design and can hence be described as a design driven by technology. Additive manufacturing (AM), on the other hand, can be described as technology driven by design. It is possible to manufacture any complex shape without technological constraints using AM. The cons aspect of additive manufacturing is its adaptability to mass production due to its repeatability. Realization of topology optimization through additive manufacturing provides full design freedom for design engineers. This paper discusses the application of topology optimization to parts designed for AM, highlighting the main practical difficulties…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Study on Effect of Laser Peening on Inconel 718 Produced by DMLS Technique

Vellore Institute of Technology-Nattudurai Navin Kumar, Aditya Chandrakant Yadav, Kumar Raja, Subramanian Prabhakaran, Chooriyaparambil Damodaran Naiju, Sivaperuman Kalainathan
Published 2019-10-11 by SAE International in United States
In Additive manufacturing, Direct Metal Laser Sintering (DMLS) is a rapid manufacturing technique used for manufacturing of functional component. Finely powered metal is melted by using high-energy fiber laser, by Island principle strategy that produces mechanically and thermally stable metallic component with reduced stresses, thermal gradients and at high precision. Inconel is an austenitic chromium nickel-based superalloy often used in the applications which require high strength and temperature resistant. It can retain its properties at high temperature. An attempt is made to examine the effect of laser shot peening (LSP) on DMLS Inconel 718 sample. Microstructure shows elliptical shaped structure and formation of new grain boundaries. The surface roughness of the material has been increased due to the effect of laser shock pulse and ablative nature. Macro hardness increased to 13% on the surface. Depth wise microhardness was investigated, found to be 17% increase on the sub-layer of the material due to the effect of a hardened matrix formed by precipitation hardening and grain size refinement attributed by laser shock peening. SEM analysis shows larger…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design of a Novel Electro-Pneumatic Gear Shift System for a Sequential Gearbox

Vellore Institute of Technology-Jeevesh Jain, Vaibhav Mittal, Dore Ranganath Srinivasa Raghuraman, Shivam Singh Rathore, Sumit Nilesh Vadodaria
Published 2019-10-11 by SAE International in United States
This paper describes the design of a novel pneumatic gear shifting system to replace the existing gear stick manual shifting system for ease of the driver while shifting gears. The aim of this work is to have a semi-automatic shifting (pneumatic shifting) removing the need for the driver clutch operation. The system consists of a solenoid valve, CO2 gas-pressurized cylinder, double-acting cylinder, and single-acting cylinder. On basis of the signal received the gear needs to be changed, the shifter opens or closes a magnetic valve assembly. The solenoid valve allows the compressed air into the piston that comes from a pressurized cylinder, in order to create the effect of shifting gears. The pedal shifter and buttons are used to shift the gears. The pedal shifter was designed by using a 3-D printing technique using PLA material. The microcontroller used is ATMEGA-328 in this system. There are three switches, one for upshift, downshift, and clutch respectively. An algorithm has been created in a microcontroller for a sequential gearbox of CBR 600RR. The system has been so…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design Analysis and 3D Printing of Non-Pneumatic Tyre

VNR VJIET-Prashanth Kannan, Amjad Shaik, Yogesh Kumar, Naga Sumanth Bareddy
Published 2019-10-11 by SAE International in United States
The major concern when implementing maneuvers are acceleration, braking and steering for the safety control which ultimately depends on the road and tyre surface friction. To withstand the vertical loads and maintain good traction with contact surface pneumatic tyres with high volume of pressurized air are required. To improve the comfort, handling and grip with low unsprung mass, non-pneumatic tyres are needed which are not reinforced with air pressure. The decreased effect of rolling resistance, added cushioning effect and better cellular shear band design increased the performance level than pneumatic tyres. Here, air is replaced by poly-composite spokes that eliminates the possibility of tyre going flat. This paper mainly discusses the environmental impact and stability issues of conventional pneumatic tyres and also focuses on the various possible design and components of an airless tyre. This paper also presents the modelling and analysis of non-pneumatic tyre followed by 3D printed sealed model using ABS (Acrylonitrile Butadiene Styrene) and TPU (Thermoplastic Polyurethane). Honeycomb structured cellular shear band made of polyurethane are tested with different shear band angles…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analogy of Thermal Properties of Polyamide 6 Reinforced with Glass Fiber and Glass Beads through FDM Process

Sri Krishna College of Engg and Tech.-Soundararajan Ranganathan, Hari Nishok Rangasamy Suguna Thangaraj, Aravind Kumar Vasudevan, Dharshan Karthick Shanmugan
Published 2019-10-11 by SAE International in United States
The essential target of this examination is to compare the morphological and thermal properties of two different polyamide composite blends with inventive thermal properties. The polyamide-6 (PA6) reinforced with 10, 20 and 30 wt. % glass fiber (GF) and PA6 reinforced with 10, 20 and 30 wt. % glass beads (GB) are the two different polyamide composite blends extruded in form of wire by twin screw extrusion process. The experimental study illustrates to print the specimens by means of Fusion Deposition Modeling (FDM) based Three-Dimensional (3D) printer. The responses like morphology, Thermal Conductivity (TC) and Heat Distortion Temperature (HDT) of composites were observed. From the scanning electron microscope (SEM) analysis equal distribution of higher 30wt% GF and GB in the PA6 matrix was observed. The results compare the increasing thermal properties of the 3D printed specimen like TC and HDT with the enhancement of beads content during the investigation. The GB are crystalline material which improves the thermal properties of the PA6 matrix and the GF are dimensionally stable material that can provide high modulus…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Effect of Cryogenic Treatment on Inconel 718 Produced by DMLS Technique

Vellore Institute of Technology-Chooriyaparambil Damodaran Naiju, Kumar Raja, Nattudurai Navin Kumar, Chandrakant Yadav Aditya, Muniappan Senthil Kumar
Published 2019-10-11 by SAE International in United States
The main purpose of this study is to investigate additive manufactured Inconel super alloy subjected to cryogenic treatment (CT). Cryogenic treatment is mainly used in aerospace, defense and automobile application. Direct metal laser sintering is an additive manufacturing technique used for manufacturing of complex and complicated functional components. Inconel is an austenitic chromium nickel based super alloy often used in the applications which require high strength & temperature resistant. In this work, a study is carried out on microstructure and mechanical properties of additive manufactured Inconel 718 when subjected to cryogenic treatment at three different time intervals. The micro-structural evolution of IN718 super-alloy before and after CT was investigated by both optic microscope and scanning electron microscope. Surface roughness and hardness at different CT time intervals has also analyzed. Additionally, XRD technique was used to analyze the surface residual stress. The result shows after three cycles of cryogenic treatment, the hardness of Inconel 718 has been substantially improved at room temperature. Microstructure shows grains in one of the test condition, a larger number of refined…
This content contains downloadable datasets
Annotation ability available