Search
Advanced Search
of the following are true

Results

Items (207,171)
This specification covers a corrosion- and heat-resistant steel in the form of seamless tubing
AMS F Corrosion and Heat Resistant Alloys Committee
The following terminology has been generated by the ATA/IATA/SAE Commercial Aircraft Composite Repair Committee (CACRC) and provides terminology for design, fabrication, and repair of composite and bonded metal structures
AMS CACRC Commercial Aircraft Composite Repair Committee
This specification covers a corrosion-resistant steel in the form of wire
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars and forgings 1.50 inches or less in diameter or least distance between parallel sides (thickness
AMS E Carbon and Low Alloy Steels Committee
To provide specifications for lighting and marking of industrial wheeled equipment whenever such equipment is operated or traveling on a highway
OPTC3, Lighting and Sound Committee
This specification covers a rust removing compound in the form of a solid, generally powdered, to be dissolved in water, and heated
AMS J Aircraft Maintenance Chemicals and Materials Committee
This SAE Aerospace Recommended Practice (ARP) provides guidance for the design of flanges on temperature sensors intended for use in gas turbine engines. Three figures detail the configuration of standard size flange mounts with bolt holes, slotted flanges, and miniaturized flanges for small probes
E-32 Aerospace Propulsion Systems Health Management
This SAE Aerospace Recommended Practice (ARP) defines the nomenclature of temperature measuring devices. General temperature measurement related terms are defined first, followed by nomenclature specifice to temperature measuring devices, particularly thermocouples
E-32 Aerospace Propulsion Systems Health Management
This SAE practice is intended for the sample preparation of test pieces for automotive wheels and wheel trim. The practice provides a consistent scribing method for use on test panels and or component parts with substrate chemical pretreatment and coating systems. Test specimens can then be subjected to various corrosion tests in order to evaluate performance without significant variations of the degree of exposure of the substrate. The scribing is used to create a break in the coating/finishing as can occur in the field through gravel and other damaging conditions. NOTE— Significant variability is attributed to surface contour, coating hardness/softness, operator reproducibility, and the scribing tool and it’s condition
Wheel Standards Committee
This document has been prepared and issued to provide information and guidance on the application of AQAP 2110 when the Supplier adheres to the provisions of 9100. This document is published as AQAP 2009 Annex F and 9137. It was jointly developed by NATO and industry representatives for use by NATO and industry to facilitate the use and understanding of the relationship between the AQAP 2110 and 9100
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This Aerospace Recommended Practice (ARP) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174. This ARP also contains the essential elements of AS8054 which remain relevant and which have not been incorporated into Original Equipment Manufacturers (OEM) specifications
E-32 Aerospace Propulsion Systems Health Management
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document provides standardized laboratory tests, test methods and equipment, and requirements for lighting devices covered by SAE Recommended Practices and Standards. It is intended for devices used on vehicles less than 2032 mm in width. Tests for vehicles larger than 2032 mm in overall width are covered in SAE J2139. Device specific tests and requirements can be found in applicable SAE technical reports
Test Methods and Equipment Stds Committee
SAE J3072 establishes requirements for a grid support inverter system function that is integrated into a plug-in electric vehicle (PEV), which connects in parallel with an electric power system (EPS) by way of conductively coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter function to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547-2018 and IEEE 1547.1-2020 or later versions
Hybrid - EV Committee
This standard specifies the communications hardware and software requirements for fueling hydrogen surface vehicles (HSV), such as fuel cell vehicles, but may also be used where appropriate with heavy-duty vehicles (e.g., buses) and industrial trucks (e.g., forklifts) with compressed hydrogen storage. It contains a description of the communications hardware and communications protocol that may be used to refuel the HSV. The intent of this standard is to enable harmonized development and implementation of the hydrogen fueling interfaces. This standard is intended to be used in conjunction with the hydrogen fueling protocols in SAE J2601 and nozzles and receptacles conforming with SAE J2600
Fuel Cell Standards Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings 10.0 inches (254 mm) and under in nominal diameter or distance between parallel sides, and stock of any size for forging, flash-welded rings, or heading
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant, work-strengthened, and aged cobalt-nickel-chromium alloy in the form of bars 2 inches (50 mm) and under in nominal diameter
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of sheet 0.040 to 0.249 inches (1.02 to 6.32 mm), inclusive, in nominal thickness (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and foil 0.1874 inch (4.76 mm) and under in nominal thickness
AMS F Corrosion and Heat Resistant Alloys Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry
Engine Power Test Code Committee
This SAE Aerospace Information Report (AIR) focuses on opportunities, challenges, and requirements in use of blockchain for Unmanned Aircraft Systems (UAS) operating at and below 400 feet above ground level (AGL) for commercial use. UAS stakeholders like original equipment manufacturers (OEMs), suppliers, operators, owners, regulators, and maintenance repair and overhaul (MRO) providers face many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain—defined as a distributed ledger technology that includes enterprise blockchain—can help address some of these challenges. Blockchain technology is evolving and also poses certain concerns in adoption. This AIR provides information on the current UAS challenges and how these challenges can be addressed by deploying blockchain technology along with identified areas of concern when using this technology. The scope of this AIR includes elicitation of key requirements for blockchain in UAS across
G-31 Digital Transactions for Aerospace
This brief User Guide recaps the content of the AS6518B UCS Architectural Model. The purpose of the UCS Architecture Model is to provide the authoritative source for other models and products within the UCS Architecture as shown in the AS6512B UCS Architecture: Architecture Description
AS-4UCS Unmanned Systems Control Segment Architecture
No scope available
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
This technical specification document describes tests that certain parts may be required to meet. For example, this tech spec applies to Self Retaining Impedance Bolts All Diameters All Heads/Shanks/Lengths. To view suppliers qualified against this standard, visit https://ts200.sae-itc.org
Engine and Airframe Technical Standards Committee (TSC)
This drawing specifies parts AGS3706, AGS3707, AGS3708, AGS3709, AGS3710, AGS3711, AGS3712, AGS3713, AGS3718, AGS3719, AGS3720, AGS3721, AGS3722, AGS3723, AGS3731, AGS3732, AGS3733, AGS3734, AGS3735, AGS3736, AGS3756, AGS3757, AGS3758, AGS3759, AGS3760, AGS3761, AGS3781, AGS3782, AGS3783, AGS3784, AGS3785, and AGS3786. To view suppliers qualified to manufacture this part, visit https://ts200.sae-itc.org
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
This specification covers beryllium in the form of bars, rods, tubing, and machined shapes from vacuum hot pressed powder
AMS G Titanium and Refractory Metals Committee
No scope available
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
This technical specification document describes tests that certain parts may be required to meet. For example, this tech spec applies to AS63236, AS63237, AS63238-239, AS63297, and AS63298-299. To view suppliers qualified against this standard, visit https://ts200.sae-itc.org
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
No scope available
Engine and Airframe Technical Standards Committee (TSC)
Items per page:
1 – 50 of 207171