Search
Advanced Search
of the following are true
(
)

Results

Items (212,577)
The purpose of this SAE Recommended Practice is to establish a testing procedure to determine the performance capability of heavy-duty vehicle cooling systems to meet Original Equipment Manufacturer or end user thermal specifications to ensure long term reliable vehicle operations. The recommendations from the present document are intended for heavy-duty vehicles including, but not limited to, on- and off-highway trucks, buses, cranes, drill rigs, construction, forestry, and agricultural machines.
Cooling Systems Standards Committee
This SAE Information Report details the important new performance properties and suggested test methods for lubricants used in e-Mobility drivetrain components. The lubricants under discussion are those used in electrified drivetrains, mainly electric-transmissions and axles (e-transmissions and e-axles). The scope is limited to those geared systems in which an electric motor (e-motor) is immersed in the powertrain lubricant or comes in contact with the powertrain lubricant. Though the report focuses on new lubricant attributes, some information on conventional lubricant attributes is included. The information presented here will be helpful in understanding the similarities and differences between conventional (i.e., internal combustion engine (ICE)) and e-Mobility powertrain systems.
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
The SAE J2521 procedure applies to high-frequency squeal noise occurrences for on-road passenger cars and light trucks below 4540 kg of GVWR. The procedure incorporates high-temperature and low-temperature test matrixes but does not fully account for the effects of the environment on brake squeal. For this test procedure, squeal occurs when the peak noise level is at least 70 dB(A) between 1.25 kHz and 16 kHz for tests using full suspension corners or full axle assemblies or between 2 kHz and 16 kHz for brakes not using a full suspension corner. Before using this recommended practice for chassis dynamometer testing, review in detail the specifics related to at least (a) instrumentation, including in-cabin microphones, (b) threshold levels for noise detection, (c) temperature control priority between the front and rear axles, (d) vehicle loading and load distribution, (e) cooling air and environmental conditioning, and (f) detailed nomenclature and labeling of channels and sensors.
Brake NVH Standards Committee
While there are various types of Fuel Cell architectures being developed, the focus of this document is on Proton Exchange Membrane (PEM) fuel cell stacks and ancillary components for automotive propulsion applications. Within the boundaries of this document are the: Fuel Supply and Storage, Fuel Processor, Fuel Cell Stack, and Balance of Plant, as shown in Figure 1.
Fuel Cell Standards Committee
This report presents, paraphrased in tabular format, an overview of the Federal Aviation Regulations (FAR) for aircraft oxygen systems. It is intended as a ready reference for those considering the use of oxygen in aircraft and those wishing to familiarize themselves with the systems requirements for existing aircraft. This document is not intended to replace the oxygen related FAR but rather to index them in some order. For detailed information, the user is referred to the current issue of the relevant FAR paragraph referenced in this report.
A-10 Aircraft Oxygen Equipment Committee
This SAE Aerospace Information Report (AIR) is intended to assist tube bending facilities dedicated to aerospace/aircraft applications. It describes in part the principles, methods, tool selection, and tool set-up requirements to achieve tube bends with aircraft quality.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
The purpose of this document is to define design, construction, operational, and maintenance requirements for hydrogen fuel storage and handling systems in on-road vehicles. Performance-based requirements for verification of design prototype and production hydrogen storage and handling systems are also defined in this document. Complementary test protocols (for use in type approval or self-certification) to qualify designs (and/or production) as meeting the specified performance requirements are described. Crashworthiness of hydrogen storage and handling systems is beyond the scope of this document. SAE J2578 includes requirements relating to crashworthiness and vehicle integration for fuel cell vehicles. It defines recommended practices related to the integration of hydrogen storage and handling systems, fuel cell system, and electrical systems into the overall Fuel Cell Vehicle.
Fuel Cell Standards Committee
This SAE Information Report provides test methods and determination options for evaluating the maximum wheel power and rated system power of vehicles with electrified vehicle powertrains. The scope of this document encompasses passenger car and light- and medium-duty (GVW <10000 pounds) hybrid-electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel-cell electric vehicles (FCEVs). These testing methods can also be applied to conventional ICE vehicles, especially when measuring and comparing wheel power among a range of vehicle types. This document version includes a definition and determination methodology for a rated system power that is comparable to traditional internal combustion engine power ratings (e.g., SAE J1349 and UN ECE R85). The general public is most accustomed to “engine power” and/or “motor power” as the rating metric for conventional and electrified vehicles, respectively. Wheel power will always be a lower-power
Hybrid - EV Committee
This test can be used to evaluate odor characteristics of non-metallic materials used in the interior cabin of a vehicle. The test conditions, odor panel requirements, scale for odor intensity and reporting of results are specified. The data from this test are useful when compared to data obtained from samples with known odor characteristics.
Volatile Organic Compounds
This recommended practice establishes test procedures and best practices for PM measurements under partial flow conditions. PFDS PM testing and certification is primarily used in heavy duty applications as described in 40 CFR Part 1065 because full flow sampling systems with a dilution tunnel and CVS can be very bulky for large heavy duty engines. 40 CFR Part 1066 also allows the use of partial flow systems for light duty applications in lieu of full flow systems. PFDS does not require the use of a CVS sampling system or a full flow dilution tunnel. This makes it easier and more convenient to perform PM measurement in smaller test cells that cannot fit a large CVS or a full flow dilution tunnel. This document describes the different components/specifications of LD and HD PFDS as well as the required quality checks necessary to ensure the integrity of the sampling system. It also addresses the many sampling options and calculations that are approved by the regulations. Correlation
Emissions Standards Committee
This SAE Standard defines the test conditions, procedures, and performance requirements for circuit breakers in ratings up to and including 200 A. The document includes automatic reset, modified reset, and manually reset types of circuit breakers for 12 VDC, 24 VDC, and 48 VDC electrical systems. Some circuit breakers may have dual voltage ratings (AC and DC); however, this document evaluates DC performance only.
Truck and Bus Electrical Systems Committee
This SAE Information Report is specific to integration of rechargeable energy storage systems (RESS) into electrification of buses of all types which comprehends safety, performance, life, etc., utilizing worldwide standards and regulations as references in order to maximize existing work. This document applies to both purpose-built electric buses and retrofit electrified buses at an original equipment manufacturer (OEM). This document does not comprehend retrofitting of buses outside the OEM manufacturing environment.
Bus Battery Committee
This SAE Aerospace Recommended Practice (ARP) describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEM’s contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMs for the purpose of establishing certified test facilities.
EG-1E Gas Turbine Test Facilities and Equipment
This SAE Standard covers 32 types of clamps most commonly and suitably being used on OEM coolant, fuel, oil, vacuum, and emission systems.
Non-Hydraulic Hose Committee
This SAE Information Report establishes a minimum level of uniform recipes for contaminants which may be used when durability testing pneumatic components to obtain additional information on how a device may perform under more true-to-life operating conditions. This type of contamination testing, however, is not meant to replace the type of performance testing described in SAE J1409 and SAE J1410. Durability testing in the presence of contamination will yield results more reflective of actual in-service field conditions and provide an additional evaluation of pneumatic devices. While the contaminant supply rate and other test criteria of the device being tested must be set by the device manufacturer or user, the items covered in this document will be:
Truck and Bus Brake Supply and Control Components Committee
This SAE Recommended Practice defines performance and life cycle tests for lithium-ion cells used primarily for propulsion of electric vehicles including battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), and other similar propulsion applications (for example, forklift trucks). The objective of this document is to define common performance test procedures for lithium-ion cells. Results from these procedures can be used for comparative purposes. Performance requirements are not defined in this document, but are to be defined by the users of the document.
Battery Standards Testing Committee
This SAE Standard covers equipment used to remove contaminated R-134a and/or R-1234yf refrigerant from mobile air conditioning (MAC) systems.
Interior Climate Control Service Committee
Under U.S. GHG and CAFE regulations, manufacturers are required to perform confirmatory testing to validate indirect air conditioning credits (refer to 40 CFR 86.1868-12). The purpose of this SAE Recommended Practice is to provide manufacturers with updated criteria for the 2020 and later model years. This SAE Recommended Practice is also suitable for reporting credit using and Engineering Analysis to the California Air Resources Board (CARB). This SAE Recommended Practice describes the work done by the IMAC GHG CRP to develop test procedures, publish SAE Standards, and determine performance requirements to demonstrate the performance of A/C technologies from the pre-approved credit menu meeting regulatory requirements. Also, enclosed in this SAE Recommended Practice are instructions that can be used by vehicle manufacturers in establishing an engineering analysis in lieu of performing the AC17 test on a vehicle which does not incorporate the credit-generating technologies. These
Interior Climate Control Vehicle OEM Committee
The following listed definitions are intended to establish terminology and criteria for describing the various kinds of automotive transmissions. A specific arrangement may be described by a combination of several of these definitions.
Automatic Transmission and Transaxle Committee
This SAE Standard serves as a guide for vibration testing procedures of Automotive and Heavy Duty storage batteries.
Starter Battery Standards Committee
This procedure provides methods to determine the appropriate inertia values for all passenger cars and light trucks up to 4540 kg of GVWR. For the same vehicle application and axle (front or rear), different tests sections or brake applications may use different inertia values to reflect the duty-cycle and loading conditions indicated on the specific test.
Brake Dynamometer Standards Committee
This SAE Standard establishes the performance specifications for the zero-tolerance breath alcohol detection system to reduce the risks of driving under the influence of alcohol. It defines the accuracy and precision requirements of the breath alcohol concentration (BrAC) measurement, as well as the acceptability criteria and key parameters to test these requirements. Additionally, this standard sets the performance requirements of the system for ethanol sensitivity, the response time, and the electrical, mechanical, and environmental conditions the system may encounter throughout the lifespan of the vehicle.
Driver Alcohol Detection System for Safety Committee
This document provides recommended practices regarding how System Theoretic Process Analysis (STPA) may be applied to safety-critical systems in any industry.
Functional Safety Committee
To provide a procedure to inspect a refrigerant cylinder used in equipment servicing mobile air-conditioning (A/C) systems. This includes the pressure cylinder used for refrigerant recovery/recycling and charging equipment.
Interior Climate Control Fluids Committee
This recommended practice is intended to provide general guidelines for the selection and proper use of cleaning and disinfecting product characteristics acceptable for use on vehicle interiors and exterior touch points (cleaning before disinfecting being best practice in general for vehicles, as with other situations), and the effectiveness of the disinfecting products with certain characteristics, as well as indicating the product characteristics that will not cause damage to those surfaces.
Cabin Disinfection Practices Committee
This SAE Standard defines the safety and performance requirements for low-speed vehicles (LSVs). The safety specifications in this document apply to any powered vehicle with a minimum of four wheels, a maximum level ground speed of more than 32 km/h (20 mph) but not more than 40 km/h (25 mph), and a maximum gross vehicle weight of 1361 kg (3000 pounds), that is intended for operating on designated roadways where permitted by law.
Special Purpose Vehicle Committee
This SAE Information Report was prepared by the SAE Fuels and Lubricants Technical Committee for two purposes: (a) to assist the users of automotive equipment in the selection of axle1 and manual transmission lubricants for field use, and (b) to promote a uniform practice for use by marketers of lubricants and by equipment builders in identifying and recommending these lubricants by a service designation.
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This SAE Recommended Practice defines a guideline for the fuel injection pump designer to select appropriate fastener designs which are considered to be tamper-resistant. It applies to fuel injection pumps used on diesel engines.
Diesel Fuel Injection Equipment Standards Committee
This SAE Recommended Practice describes the recommended methods for testing flexible harness coverings for use on ground vehicle electrical distribution systems. This SAE Recommended Practice shall apply to all tapes, extruded tube, and textile tube.
Harness Covering Standards Committee
This document provides information applicable to the design and development of portable and aircraft mounted cabin air contaminant sensors. This AIR complements any future portable or aircraft-mounted cabin air sensor standards.
AC-9M Cabin Air Measurement Committee
The purpose of this standard is to aid manufacturers in creating devices that will provide maintenance staff with objective, reliable data consistent with certain types of airborne contaminants (“sources”), captured either during an event or during maintenance troubleshooting on the ground, in both cases for post-flight interpretation on the ground.
AC-9M Cabin Air Measurement Committee
The thermal modeling guidelines and best practices provided in this document are applicable to powered aerospace vehicle wires and wire bundles in thermal environments ranging from -65 to +260 °C (-85 to +500 °F) and pressures ranging from sea level to space vacuum. Currently the ARP only considers steady state and direct current conditions. The effects of wiring terminations and connectors are not addressed. Both can significantly impact the overall current derating and safety margins for a wiring system.
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This standard is applicable to manual soldering and machine soldering processes utilizing controlled soldering devices, for electrical connections for wiring and cabling used in aerospace vehicles. Description of a component or device herein is not to be construed as authorizing the use of the component or device.
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This SAE Aerospace Information Report (AIR) outlines transient measurement methods to determine engine-generated levels of relevant compressor bleed air contaminant marker compounds on a ground level test cell for aircraft propulsion engine or auxiliary power unit (APU) to be fitted on civil and military aircraft. This AIR focuses on lubrication oils that might enter the bleed air through leaking engine seals or other sources. Also considered are ingested engine combustion products, which must be differentiated from oil. The intent of this AIR is to identify key species that are markers typical of contaminants, not to characterize all possible contaminants. Real-time (transient) measurement methods to approximately quantify those markers are also discussed. Real-time methods developed for transient measurement could also be applied for real-time measurements in steady state operations in ground level test beds. Discussions of test setup and test procedures, techniques for sampling
E-31B Bleed Air Committee
This specification covers two-component polysulfide sealing compounds for quick repair of integral fuel tanks and fuel cell cavities. The sealing compound shall be capable of being cured as low as 20 °F (-7 °C), and be resistant to long term exposures from -65 to 250 °F (-54 to 121 °C).
AMS G9 Aerospace Sealing Committee
This document describes a standard method for measuring the viscosity of thickened (AMS1428) Type II/III/IV Aircraft Deicing/Anti-icing Fluids. The determination of viscosity for a Non-Newtonian fluid is very sensitive to shear and differences in sample chamber geometry. Even slight differences can have a large effect on measurement results. The test parameters and associated error for this standard are applicable to the Brookfield LV viscometer. A Brookfield LV or equivalent viscometer shall be used. To be considered equivalent, an alternate viscometer must demonstrate statistically equivalent performance, i.e., accuracy and precision when testing thickened (AMS1428) fluids using the same test parameters and conditions.Test parameters and conditions outside of the ranges described within this standard may be used only if they meet minimum limits for precision and accuracy established for the Brookfield LV viscometer. To compare viscosities, the same test parameters and conditions
G-12ADF Aircraft Deicing Fluids
AIR 1939 addresses communication of LCC data between equipment suppliers, aircraft engine producers, aircraft manufacturers, and users, as illustrated in Figure 1. The LCC data categories addressed include: research, development, test and evaluation (RDT&E); acquisition (initial procurement and investment); and operating and support (O&S) costs. While input and output formats are suggested, calculation procedures and cost methodology are specifically excluded since many LCC models preferred by the industry are company sensitive or proprietary (Figure 1). The relationship of LCC input data to program phase is described. Ground rules and assumptions are addressed. A glossary of LCC terms is provided. The LCC impact of propulsion systems on other aircraft systems is considered. This document was specifically developed for military propulsion system cost analysis. However, it is believed that a functional relationship exists between military and commercial Life Cycle Cost analysis and that
LCLS Life Cycle Logistics Supportability
This test procedure outlines the necessary test equipment (test fixture, dynamometer, data acquisition system, etc.) and test sequence required to test for low-frequency brake noise (200 Hz to 1.25 kHz) on a brake noise dynamometer. It is intended to complement SAE J2521, which focuses on high-frequency brake squeal. This RP applies to passenger cars and light trucks with a gross vehicle weight rating below 4536 kg. Before using this RP for heavier vehicles, consult and agree with the test requestor and the testing facility.
Brake NVH Standards Committee
This SAE Standard provides safety requirements for vacuum excavation and sewer cleaning equipment. This document is not intended to cover equipment addressed by other on-road federal, state, and local regulations. Truck-mounted or trailer-mounted vehicles are required to meet local or regional on-road requirements, as applicable.
MTC9, Trenching and Horizontal Earthboring Machines
This standard is applicable to AQMS COs listed in the Online Aerospace Supplier Information System (OASIS) database. This standard is intended for the management and resolution of AQMS CO’s major QMS nonconformities. This standard is not intended to address QMS nonconformities classified as minor or nonconformities related to the products or services provided by the CO.
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This SAE Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) and plug-in hybrid-electric vehicles (PHEVs) designed for public roads. This recommended practice provides instructions for measuring and calculating the exhaust emissions and fuel economy of such vehicles over the following standard test cycles: the Urban Dynamometer Driving Schedule (UDDS), the Highway Fuel Economy Driving Schedule (HFEDS), the US06 Driving Schedule (US06), the SC03 Driving Schedule (SC03), and the cold-start Federal Test Procedure (cold FTP), which is based on the UDDS. However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester. The
Light Duty Vehicle Performance and Economy Measure Committee
The intention of this standard is to establish a framework to measure the efficiency of PWM HVAC Blower Controllers and Brushless DC Motor Controllers and define a usage based overall efficiency. This result can then be used by vehicle OEMs to demonstrate compliance towards requirements or benchmarks established by regulatory agencies.
Interior Climate Control MAC Supplier Committee
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into. Clips are typically inserted into sheet or rolled metal
USCAR
This SAE Aerospace Information Report (AIR) defines the helicopter bleed air requirements which may be obtained through compressor extraction and is intended as a guide to engine designers.
S-12 Powered Lift Propulsion Committee
Items per page:
1 – 50 of 212577