The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Vega-Moron, Roberto
Show Only


Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Crevice Corrosion Accelerated Test for Cylinder Head/Gasket/Monoblock Assemblies from Lightweight Engines Exposed to Overheating Cycles

Instituto Politecnico Nacional Esime Zac-Gerardo Rodríguez-Bravo, Roberto Vega-Moron
Instituto Politécnico Nacional ESIQIE-Jesús Godínez-Salcedo
  • Technical Paper
  • 2020-01-1067
To be published on 2020-04-14 by SAE International in United States
Severe crevice corrosion occurring at the joint of cylinder head/gasket/mono-block from lightweight engines causes accelerated dissolution of lightweight material, in particular, in cylinder head producing the linking of the cooling vessels with the combustion chambers or oil vessels. It is conductive to combustion of coolant or oil, and contamination of oil with coolant or vice versa, which is considered as catastrophic engine failure. Since crevice corrosion is dependent of many of the actual assembly characteristics, coolant and engine operation conditions, full-scale tests are the most frequent alternative for this type of evaluations. Nonetheless, they are very long and expensive, and sometimes, unreliable tests. Alternatively, the standard procedure ASTM-G78 is widely used to evaluate crevice corrosion propensity of different metallic materials under certain specified conditions trough immersion tests in a corrosive media in shorter test times. However, the method does not cover the characteristics and conditions existing at the cylinder head/gasket/mono-block joint. Hence, this paper presents an accelerated test consisting on three-electrode cyclic potentiodynamic anodic polarization and polarization resistance standard trials using special assembly samples to…