Your Selections

Sia, Bernard
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Measurement of Aluminum Edge Stretching Limit Using 3D Digital Image Correlation

FCA US LLC-Changqing Du, Yongjun Zhou, Dajun Zhou
Oakland University-Xin Xie, Xiaona Li, Yi-Hsin Chen, Guobiao Yang, Yaqian Zheng, Bernard Sia, Christina Phillips, Lianxiang Yang
Published 2015-04-14 by SAE International in United States
This paper introduces an industrial application of digital image correlation technique on the measurement of aluminum edge stretching limit. In this study, notch-shape aluminum coupons with three different pre-strain conditions are tested. The edge stretching is proceeded by standard MTS machine. A dual-camera 3D Digital Image Correlation (DIC) system is used for the full field measurement of strain distribution in the thickness direction. Selected air brush is utilized to form a random distributed speckle pattern on the edge of sheet metal. A pair of special optical lens systems are used to observe the small measurement edge area. From the test results, it demonstrate that refer to the notched coupon thickness, pre-tension does not affect the fracture limit; refer to the virgin sheet thickness, the average edge stretch thinning limits show a consistent increasing trend as the pre-stretch strain increased. Test plan, experimental setup, and experimental results are shown in detail in this article.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Spatial Phase-Shift Digital Shearography for Out-of-Plane Deformation Measurement

SAE International Journal of Materials and Manufacturing

Donghua University; Oakland University-Ping Zhong
Oakland University-Xin Xie, Yaqian Zheng, Xiaona Li, Bernard Sia, Lianxiang Yang
  • Journal Article
  • 2014-01-0824
Published 2014-04-01 by SAE International in United States
Measuring deformation under dynamic loading is still a key problem in the automobile industry. The first spatial phase-shift shearography system for relative deformation measurement is reported. Traditional temporal phase-shift technique-based shearography systems are capable of measuring relative deformation by using a reference object. However, due to its low acquisition rate, the existing temporal phase-shift shearography system can be only used under static loading situations. This paper introduces a digital shearography system which utilizes the spatial phase-shift technique to obtain an extremely high acquisition rate. The newly developed spatial phase-shift shearography system uses a Michelson-Interferometer as the shearing device. A high power laser at 532nm wavelength is used as the light source. A one mega pixels high speed CCD camera is used to record the speckle pattern interference. The spatial frequency carrier is introduced by tilting one of the mirrors in the Michelson-Interferometer. The Fourier Transform method (FT) is used to separate the spectra on spatial frequency domain. The Windowed Inverse Fourier Transform (WIFT) method is then used to evaluate the phase information of the recorded…
Annotation ability available