Results
This SAE Standard encompasses the recommended minimum requirements for non-metallic tubing and/or combinations of metallic tubing to non-metallic tubing assemblies manufactured as liquid- and/or vapor-carrying systems designed for use in gasoline, alcohol blends with gasoline, or diesel fuel systems. This SAE Standard is intended to cover tubing assemblies for any portion of a fuel system which operates above −40 °C (−40 °F) and below 115 °C (239 °F), and up to a maximum working gage pressure of 690 kPa (100 psig). The peak intermittent temperature is 115 °C (239 °F). For long-term continuous usage, the temperature shall not exceed 90 °C (194 °F). It should be noted that temperature extremes can affect assemblies in various manners and every effort must be made to determine the operating temperature to which a specific fuel line assembly will be exposed, and design accordingly. The applicable SAE standards should be referenced when designing liquid-carrying and/or vapor-carrying
This SAE Recommended Practice provides instructions and test procedures for measuring air consumption of air braked vehicles equipped with Antilock Brake Systems (ABS) used on highways
This foundation specification (AMS3050) and its associated category specifications (AMS3050/1 through AMS3050/9) cover anti-seize compounds for use on threads of nuts, studs, bolts, and other mating surfaces, including those of superheated steam installations, at temperatures up to 1050 °F (566 °C). Compounds containing PTFE are limited to 600 °F (315 °C) maximum. Materials for nuts, studs, bolts, and other mating surfaces include, but are not limited to: steel, nickel alloys, stainless steel, and silver-coated materials. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.3.3, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or
This SAE Information Report is primarily to familiarize the designer of hydraulic powered machinery with the necessity for oil filtration in the hydraulic power circuit, the degree of system cleanliness required, types of filtration and filters available, and their location and maintenance in the hydraulic circuit
This SAE Aerospace Information Report (AIR) identifies and summarizes the various factors that must be considered and evaluated by the design or specifying engineer in establishing the specifications and design characteristics of battery-powered aircraft tow tractors. This AIR is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications
This SAE Standard applies to horizontal earthboring machines of the following types: a Auger boring machines b Rod pushers c Rotary rod machines d Impact machines e Horizontal directional drilling (HDD) machines (tools only) The illustrations used are for classification and are not intended to resemble a particular machine. Only basic working dimensions are given. They may be supplemented by the machine manufacturer. This document is based on existing commercial horizontal earthboring machines. This document does not apply to HDD machines as defined in ISO 21467. It only covers tools used with HDD machines. It also does not apply to specialized mining machinery covered in SAE J1116, Table 1, nor does it apply to conveyors, tunnel boring machines, pipe jacking systems, microtunnelers, or well-drilling machines
This specification covers the engineering requirements for cadmium deposited on ferrous and nonferrous metals using a low hydrogen embrittlement (LHE) electroplating process
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, and flash-welded rings up to 4.00 inches (101.6 mm), exclusive, in least distance between parallel sides (thickness) or diameter, and stock of any size for forging or flash-welded rings
This SAE Recommended Practice applies to technical publications which present instructions for the proper unloading, set-up, installations, pre-delivery inspection, operation, and servicing of off-road self-propelled work machines as categorized in SAE J1116. Advertising/marketing and other pre-purchase publications are not included
This specification covers a corrosion-resistant nickel-copper alloy in the form of bars up to 3.00 inches (76.2 mm), inclusive, in thickness and forgings and forging stock of any size
This SAE Recommended Practice describes the test procedures for conducting dynamic frontal strength test for COE and other heavy trucks with forward controls. Its purpose is to establish recommended test procedures which will standardize the procedure for heavy trucks. Descriptions of the test setup, test instrumentation, photographic/video coverage, and the test fixtures are included
This specification defines limits of variation for determining acceptability of the composition of cast or wrought titanium and titanium alloy parts and material acquired from a producer
This SAE Recommended Practice provides performance, sampling, certifying requirements, test procedures, and marking requirements for aftermarket wheels intended for normal highway use on passenger cars, light trucks, and multipurpose passenger vehicles. For aftermarket wheels on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. These performance requirements apply only to wheels made of materials included in Tables 1 and 2. For wheels using composite material, refer to SAE J3204. New nomenclature and terms are added to clarify wheel constructions typically not used in OEM applications. The testing procedures and requirements are based on SAE standards listed in the references
This specification covers an aluminum alloy in the form of plate from 1.000 to 6.000 inches (25.40 to 152.40 mm) in thickness (see 8.6
This specification covers established manufacturing tolerances applicable to low-alloy steel bars ordered to inch/pound dimensions. These tolerances apply to all conditions, unless otherwise noted. The term “exclusive” is used to apply only to the higher figure of the specified range
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welded and drawn tubing 0.125 inch (3.18 mm) and over in nominal OD and 0.015 inch (0.38 mm) and over in nominal wall thickness
This specification covers one type of fluorescent magnetic particles in the form of a mixed, ready-to-use suspension in an odorless, inspection oil vehicle and packaged in aerosol cans
Test procedure for anti-lock brake system (ABS/anti-lock) performance for trucks, truck-tractors, and buses over 4536 kg (10000 pounds
This document presents criteria for design and location of passenger reading lights in commercial aircraft. For LED reading light requirements, see ARP5873, titled: LED Passenger Reading Light Assembly
This SAE Aerospace Recommended Practice (ARP) is intended to provide definitions of and recommendations for drawing limits pertaining to surface and edge features on machined metal fluid fittings and is subject to change to keep pace with experience and technical advances. The subject includes: features, descriptions and definitions, examples, limits, inspection methods and standard drawing callouts where applicable. Fittings may retain unmachined material surfaces that exhibit similar surface features as machined surfaces and may be inspected to the same criteria. These unmachined surfaces may also contain unique features that are addressed separately. See Figure 1 for the relationship of surface and edge features
This specification covers pyrometric requirements for equipment used for the thermal processing of metallic materials. Specifically, it covers temperature sensors, instrumentation, thermal processing equipment, correction factors and instrument offsets, system accuracy tests, and temperature uniformity surveys. These are necessary to ensure that parts or raw materials are heat treated in accordance with the applicable specification(s
The purpose of this SAE Recommended Practice is to establish reference standards for airflow measurements in the ranges required for testing automotive engine induction systems and to describe equipment that will facilitate the use of such standards to check the accuracy of various equipment and methods
This SAE Standard specifies a message set, and its data frames and data elements, for use by applications that use vehicle-to-everything (V2X) communications systems
The purpose of this SAE Recommended Practice is to establish guidelines for the automatic transmission and hydraulic systems engineer to design rectangular cross section seals for rotating and static grooved shaft applications. Also included are property comparisons of polymeric materials suitable for these applications. Historically, material covered in this document is not intended to include aluminum contact applications
This Recommended Practice provides a procedure to locate driver seat tracks, establish seat track length, and define the SgRP in Class B vehicles (heavy trucks and buses). Three sets of equations that describe where drivers position horizontally adjustable seats are available for use in Class B vehicles depending on the percentages of males to females in the expected driver population (50:50, 75:25, and 90:10 to 95:5). The equations can also be used as a checking tool to estimate the level of accommodation provided by a given length of horizontally adjustable seat track. These procedures are applicable for both the SAE J826 HPM and the SAE J4002 HPM-II
This SAE Recommended Practice establishes three alternate methods for describing and evaluating the truck driver's viewing environment: the Target Evaluation, the Polar Plot and the Horizontal Planar Projection. The Target Evaluation describes the field of view volume around a vehicle, allowing for ray projections, or other geometrically accurate simulations, that demonstrate areas visible or non-visible to the driver. The Target Evaluation method may also be conducted manually, with appropriate physical layouts, in lieu of CAD methods. The Polar Plot presents the entire available field of view in an angular format, onto which items of interest may be plotted, whereas the Horizontal Planar Projection presents the field of view at a given elevation chosen for evaluation. These methods are based on the Three Dimensional Reference System described in SAE J182a. This document relates to the driver's exterior visibility environment and was developed for the heavy truck industry (Class B
This SAE Recommended Practice describes two-dimensional 95th percentile truck driver side view, seated stomach contours for horizontally adjustable seats (see Figure 1). There is one contour and three locating lines to accommodate male-to-female ratios of 50:50, 75:25, and 90:10 to 95:5
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to: a Ability of the parking brake system to lock the braked wheels. b The vehicle holding or sliding on the grade, fully loaded or unloaded. c Applied manual effort. d Unburnished or burnished brake lining friction conditions. e Down and up grade directions
This document presents a catalog of safety sign text and artwork that can be used by any ready mixed concrete truck manufacturer to warn of common hazards
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate
This specification covers requirements for a coating consisting of finely powdered molybdenum disulfide in a heat-resistant inorganic binder applied to parts
This specification covers a corrosion-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness
This specification covers beryllium in the form of bars, rods, tubing, and machined shapes fabricated from vacuum hot-pressed powder
This specification covers the engineering requirements for applying coatings to parts by the plasma spray process and the properties of such coatings
This standard specifies the communications hardware and software requirements for fueling hydrogen surface vehicles (HSV), such as fuel cell vehicles, but may also be used where appropriate with heavy-duty vehicles (e.g., buses) and industrial trucks (e.g., forklifts) with compressed hydrogen storage. It contains a description of the communications hardware and communications protocol that may be used to refuel the HSV. The intent of this standard is to enable harmonized development and implementation of the hydrogen fueling interfaces. This standard is intended to be used in conjunction with the hydrogen fueling protocols in SAE J2601 and nozzles and receptacles conforming with SAE J2600
Items per page:
50
1 – 50 of 212608