The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Peng, Hong
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimization of the Aerodynamic Lift and Drag of LYNK&CO 03+ with Simulation and Wind Tunnel Test

Dassault Systemes(Shanghai) Information Technology Co.-Weiliang Xie, Bo Li, Xiaowei Zhao
Geely Automobile Research Institute-Qian Feng, Biaoneng Luo, Huixiang Zhang, Hong Peng, Zhenying Zhu, Zhi Ding, Ling Zhu
  • Technical Paper
  • 2020-01-0672
To be published on 2020-04-14 by SAE International in United States
Based on the first sedan of the LYNK&CO brand from Geely, a high performance configuration with the additional aerodynamic package was developed. The aerodynamic package including the front wheel deflector, the front lip, the side skirt, the rear spoiler and the rear diffuser, were upgraded to generate enough aerodynamic downforce for better handing stability, without too much compromising of the aerodynamic drag of the vehicle to keep a low fuel consumption. Simulation approach with PowerFLOW, combined with the design space exploration method were used to optimize both of the aerodynamic lift and drag. Wind tunnel test was also used to firstly calibrate the simulation results and finally to validate the optimized design. The results turn out to be appropriate trade-off between the lift and the drag to meet the aerodynamics requirement, and a consistently good matching between the simulation and test.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Road Noise Evaluation by Sound Quality Simulation Module

Geely Automobile Research Institute-Perry Gu, Jie Mao, Zhidong Chen, Zhi Ding, Lei Cheng, Zhenying Zhu, Hong Peng
  • Technical Paper
  • 2020-01-1275
To be published on 2020-04-14 by SAE International in United States
An objective evaluation of sound quality is a technical bridge connecting sound pressure level (SPL) and human auditory sensation. In this paper, an algorithm is proposed for calculating objective evaluation parameters of sound quality (including loudness, sharpness and articulation index), considering acoustic characteristics of human external ear, middle ear and inner ear to reflect auditory sensation. A sound quality simulation (SQS) module is coded according to the algorithm. The module is used for evaluating sound quality of road noise from an SUV in three steps. Firstly, interior noise is predicted by integrating finite-element method (FEM), hybrid FE-SEA method, and statistical energy analysis (SEA) for low frequency (20~315 Hz), medium frequency (315~500 Hz), and high frequency (>500 Hz) in 1/3 octave band, respectively. The predicted interior noise SPLs are compared with the measured results, with deviations less than 3dB in average. Secondly, the sound quality parameters are calculated using the predicted SPLs in the SQS module. The predicted and measured loudness, sharpness, and articulation index are compared, with average deviations less than 5%. Finally, the predicted…