The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Pellegrini, Leonardo
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Parametric Study of the Flammability of Dieseline Blends with and without Ethanol

Concawe-Heather Hamje, John Rogerson
ENI Spa-Leonardo Pellegrini
Published 2019-01-15 by SAE International in United States
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this; however, a gasoline/diesel mixture in a fuel tank can result in a flammable headspace, particularly at very cold ambient temperatures. A mathematical model to predict the flammability of dieseline blends, including those containing ethanol, was previously validated. In this paper, that model is used to study the flammability of dieseline blends parametrically. Gasolines used in the simulations had Dry Vapour Pressure Equivalent (DVPE) values of 45, 60, 75, 90 and 110 kPa. Simulations were carried out for dieseline blends containing ethanol with two types of specifications - a fixed ethanol volume percent in the dieseline blend (0-50% ethanol), or blends containing specified EXX gasolines (E10, E20, E30, E40, E60 and E85) added to diesel fuel. Predicted Upper Flammability Limit (UFL) temperatures and blend DVPEs are presented for all…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Demanding Low Temperature Urban Operation on the Real Driving Emissions Performance of Three European Diesel Passenger Cars

Concawe, Belgium-Heather Hamje
Eni SpA, Italy-Corrado Fittavolini, Leonardo Pellegrini
Published 2018-09-10 by SAE International in United States
In Europe, the development and implementation of new regulatory test procedures including the chassis dynamometer (CD) based World Harmonised Light Duty Test Procedure (WLTP) and the Real Driving Emissions (RDE) procedure, has been driven by the close scrutiny that real driving emissions and fuel consumption from passenger cars have come under in recent times. This is due to a divergence between stated certification performance and measured on-road performance, and has been most pointed in the case of NOx (oxides of nitrogen) emissions from diesel cars. The RDE test is certainly more relevant than CD test cycles, but currently certification RDE cycles will not necessarily include the most extreme low speed congested or low temperature conditions which are likely to be more challenging for NOx after-treatment systems. To build understanding of the emissions and fuel consumption performance of the latest available diesel passenger cars, Concawe has conducted a study of the performance of three vehicle types. Two of the vehicles featured urea-dosed Selective Catalytic Reduction (SCR) after-treatment, whilst the third was fitted with a Lean NOx…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Mathematical Model for the Vapour Composition and Flammability of Gasoline - Diesel Mixtures in a Fuel Tank

Concawe-Heather Hamje, David Rickeard
ENI Spa-Leonardo Pellegrini
Published 2017-10-08 by SAE International in United States
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this, but a practical concern is the flammability of the headspace vapours in the vehicle fuel tank. Gasoline is much more volatile than diesel so, at most ambient temperatures, the headspace vapours in the tank are too rich to burn. A gasoline/diesel mixture in a fuel tank therefore can result in a flammable headspace, particularly at cold ambient temperatures. A mathematical model is presented that predicts the flammability of the headspace vapours in a tank containing mixtures of gasoline and diesel fuel. Fourteen hydrocarbons and ethanol represent the volatile components. Heavier components are treated as non-volatile diluents in the liquid phase. The non-ideality of the blends of hydrocarbons and ethanol is accounted for using activity coefficients. Predictions for dry vapour pressure equivalent (DVPE), vapour phase composition and flammability are…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Vapour Space Flammability Considerations for Gasoline Compression Ignition Vehicles Operating on “Dieseline” Blends.

SAE International Journal of Fuels and Lubricants

Concawe-Heather Hamje, David Rickeard
ENI Spa-Leonardo Pellegrini
  • Journal Article
  • 2016-01-2266
Published 2016-10-17 by SAE International in United States
Gasoline Compression Ignition (GCI) has been identified as a technology which could give both high efficiency and relatively low engine-out emissions. The introduction of any new vehicle technology requires widespread availability of appropriate fuels. It would be ideal therefore if GCI vehicles were able to operate using the standard grade of gasoline that is available at the pump. However, in spite of recent progress, operation at idle and low loads still remains a formidable challenge, given the relatively low autoignition reactivity of conventional gasoline at these conditions. One conceivable solution would be to use both diesel and gasoline, either in separate tanks or blended as a single fuel (“dieseline”). However, with this latter option, a major concern for dieseline would be whether a flammable mixture could exist in the vapour space in the fuel tank. It is expected that in a practical scenario, the ambient temperature would generally exceed the Lower Flammability Limit (LFL) temperature of diesel/gasoline blends. A non-flammable vapour could still be assured, however, if the temperature in the fuel tank were above…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hydrocracked Fossil Oil and Hydrotreated Vegetable Oil (HVO) Effects on Combustion and Emissions Performance of “Torque-Controlled” Diesel Engines

ENI Div. R&M-Pietro Scorletti
ENI SpA-Leonardo Pellegrini
Published 2015-09-06 by SAE International in United States
The present paper describes the results of a research activity aimed at studying the potential offered by the use of Hydrocracked fossil oil (HCK) and Hydrotreated Vegetable Oil (HVO) blends as premium fuels for next generation diesel engines.Five fuels have been tested in a light duty four cylinder diesel engine, Euro 5 version, equipped with closed loop control of the combustion. The set of fuels comprises four experimental fuels specifically formulated by blending high cetane HVO and HCK streams and oneEN590-compliant commercial diesel fuel representative of the current market fuel quality.A well consolidated procedure has been carried out to estimate, for the tested fuels, the New European Driving Cycle (NEDC) vehicle performance by means of the specific emissions at steady-state engine operating points. The procedure included combustion, emission and fuel consumption analysis at seven steady state partial speed/loads test points which are representative of the urban and extra-urban part of the engine homologation cycle (NEDC) and at high speed/high load engine operating condition outside the NEDC area.The results of the experimental activity proved that HCK-HVO…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation of the Effect of Compression Ratio on the Combustion Behavior and Emission Performance of HVO Blended Diesel Fuels in a Single-Cylinder Light-Duty Diesel Engine

ENI SpA-Leonardo Pellegrini
Istituto Motori CNR-Carlo Beatrice, Gabriele Di Blasio
Published 2015-04-14 by SAE International in United States
Hydrotreated vegetable oil (HVO) is a renewable high quality paraffinic diesel that can be obtained by the hydrotreating of a wide range of biomass feedstocks, including vegetable oils, animal fats, waste oils, greases and algal oils. HVO can be used as a drop-in fuel with beneficial effects for the engine and the environment.The main objective of this study was to explore the potential of HVO as a candidate bio blendstock for new experimental formulations of diesel fuel to be used in advanced combustion systems at different compression ratios and at high EGR rates in order to conform to the Euro 6 NOx emission standard.The experiments were carried out in a single-cylinder research engine at three steady-state operating conditions and at three compression ratios (CR) by changing the piston. The set of fuels comprised a commercial EN590-compliant diesel fuel and four experimental fuels formulated ad hoc to investigate the effect of natural cetane provided by the HVO in comparison with artificial cetane.The fuel quality has proved to affect the specific fuel consumption, the maximum pressure gradient…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modelling a Gasoline Compression Ignition (GCI) Engine Concept

Concawe-Roger F. Cracknell, Javier Ariztegui, Thomas Dubois, Heather Hamje, Leonardo Pellegrini, David Rickeard, Kenneth D. Rose
FEV GmbH-Karl Alexander Heufer, Hans Rohs
Published 2014-04-01 by SAE International in United States
Future engines and vehicles will be required to reduce both regulated and CO2 emissions. To achieve this performance, they will be configured with advanced hardware and engine control technology that will enable their operation on a broader range of fuel properties than today.Previous work has shown that an advanced compression ignition bench engine can operate successfully on a European market gasoline over a range of speed/load conditions while achieving diesel-like engine efficiency and acceptable regulated emissions and noise levels. Stable Gasoline CI (GCI) combustion using a European market gasoline was achieved at high to medium engine loads but combustion at lower loads was very sensitive to EGR rates, leading to longer ignition delays and a steep cylinder pressure rise. In general, the simultaneous optimisation of engine-out emissions and combustion noise was a considerable challenge and the engine could not be operated successfully at lower load conditions without an unrealistic amount of boost pressure.To identify ways to improve the lower load performance of a GCI engine concept, Computational Fluid Dynamics and KIVA simulations have now been…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of POMDME Blend on PAH Emissions and Particulate Size Distribution from an In-Use Light-Duty Diesel Engine

ENI S.p.A.-Leonardo Pellegrini, Renata Patrini
Saipem S.p.A.-Mario Marchionna
Published 2014-04-01 by SAE International in United States
Polyoxymethylene dimethyl ether (POMDME) is a synthetic fuel from alternative energy sources, which can be blended in any ratio with petroleum diesel fuel.The regulated and non-regulated emissions, especially polyaromatic hydrocarbons (PAH) and particle number size distribution (PNSD), from an old Euro-3 diesel engine fueled with a 7,5% blend of POMDME in commercial diesel fuel were measured and compared to the base diesel fuel, after adjusting exhaust gas ratio (EGR) in order to match the level of NOx emission.The experimental results show a significant reduction in soot and particulate matter (PM) emissions. The number of particles smaller than 30 nm is slightly increased at low speed and low load operating conditions, while at high speed the number concentration of particles larger than 30 nm is reduced.The PAH emissions were found higher for the oxygenated fuel blend than for the base fuel. This result is consistent with the exhaust gas temperature profiles during the PAH sampling which suggest that the oxidation catalyst might have a slightly lower catalytic activity when using this oxygenated fuel.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in an Old Light-Duty Diesel Car

ENI SpA-Leonardo Pellegrini, Mario Marchionna, Renata Patrini, Salvatore Florio
Published 2013-04-08 by SAE International in United States
Polyoxymethylene dimethyl ether (POMDME) is a new alternative fuel that can be produced from waste biomasses and tailored through the distribution of oligomers to fit into the distillation range of diesel fuel. Since one potential advantage of alternative fuels is that they could reduce emissions also from old in-use vehicles without waiting for their replacement, we have measured and evaluated the emission performance of neat POMDME and a blend of 10% POMDME and 90% commercial diesel fuel in an old Euro-2 diesel car over the NEDC driving cycle. As compared to the reference diesel fuel, the experimental results show a significant reduction in PM emissions already with the 10% blend, i.e., −18%, and even more pronounced with the neat POMDME, i.e., −77%. With this latter the PM emission reached below the Euro 4 limit. The composition of PM was quite different for the two extreme fuels; being mostly VOF from lube oil for the neat POMDME, while mostly soot in the case of diesel fuel. Possibly due to high frequency of C-O bonds in its…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Combustion Behaviour and Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in a Light-Duty Diesel Engine

ENI SpA-Leonardo Pellegrini, Mario Marchionna, Renata Patrini
Istituto Motori CNR-Carlo Beatrice, Nicola Del Giacomo, Chiara Guido
Published 2012-04-16 by SAE International in United States
The combustion behaviour, the mechanisms of soot formation, and the emission performance of a mixture of polyoxymethylene dimethyl ethers (POMDME) oligomers with a number of oxymethylene units ranging from 3 to 5, both neat and blended at 12.5% and 50% levels with commercial diesel fuel have been investigated. The goals were a first evaluation of the POMDME impact on the diesel injector behaviour, on the combustion process as well as on the emission performance of a light duty engine. Then a brief screening on the capability to improve the NOx-PM trade-off using POMDME by means of the exhaust gas recirculation (EGR) rate increment was also assessed. Therefore, the experiments were carried out first using an injector test rig to control injection parameters, then in a transparent single-cylinder research engine with optical access for combustion visualization with spatially-resolved measurements of flame temperature and soot concentration, and finally in a light-duty multi-cylinder engine. Two operating conditions were chosen for the tests as representative of the most critical point for emission and noise optimization: engine speed of 1500…
Annotation ability available